20.圓x2+y2=4經(jīng)過變換公式$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$后,得到曲線方程是( 。
A.$\frac{{x}^{2}}{16}$+y2=1B.x2+$\frac{{y}^{2}}{16}$=1C.x2+$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$+y2=1

分析 直接利用變換公式代入化簡求解即可.

解答 解:圓x2+y2=4經(jīng)過變換公式$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=2y}\end{array}\right.$即:$\left\{\begin{array}{l}{x=2x′}\\{y=\frac{1}{2}y′}\end{array}\right.$后,得到曲線方程是:4x′+$\frac{1}{4}y{′}^{2}$=4.
可得:x2+$\frac{{y}^{2}}{16}$=1.
故選:B.

點評 本題考查曲線與方程的應用,變換的運算法則的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.已知集合P={1,2},Q={z|z=x+y,x,y∈P},則集合Q為{2,3,4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知拋物線y2=4x上一點P到焦點的距離等于2,并且點P的坐標是(1,±2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.直線x+y+$\sqrt{3}$=0的傾斜角為(  )
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.原命題“若x≥3,則x<0”的逆否命題是( 。
A.若x≥0,則x<3B.若x<3,則x≤0C.若x<0,則x≤3D.若x>3,則x≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{1}{2}$sinωx•cosωx-$\frac{1}{2}$cos2ωx的最小正周期為π,且f(x)為[0,$\frac{3π}{8}$]上的增函數(shù),則ω的值為( 。
A.±1B.1C.±2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知圓M的圓心為M(-1,2),直線y=x+4被圓M截得的弦長為$\sqrt{2}$,點P在直線l:y=x-1上.
(1)求圓M的標準方程;
(2)設點Q在圓M上,且滿足$\overrightarrow{MP}$=4$\overrightarrow{QM}$,求點P的坐標;
(3)設半徑為5的圓N與圓M相離,過點P分別作圓M與圓N的切線,切點分別為A,B,若對任意的點P,都有PA=PB成立,求圓心N的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.函數(shù)f(x)=x3,x∈[0,2],則f(x)的值域是(  )
A.[0,8]B.[0,6]C.[1,6]D.[1,8]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.用反證法證明命題:“若(a-1)(b-1)(c-1)<0,則a,b,c中至少有一個小于1”時,下列假設中正確的是( 。
A.假設a,b,c中至多有一個大于1B.假設a,b,c中至多有兩個小于1
C.假設a,b,c都大于1D.假設a,b,c都不小于1

查看答案和解析>>

同步練習冊答案