【題目】如圖是某手機(jī)商城2018年華為、蘋果、三星三種品牌的手機(jī)各季度銷量的百分比堆積圖(如:第三季度華為銷量約占50%,蘋果銷量約占20%,三星銷量約占30%).根據(jù)該圖,以下結(jié)論中一定正確的是( 。

A.華為的全年銷量最大B.蘋果第二季度的銷量大于第三季度的銷量

C.華為銷量最大的是第四季度D.三星銷量最小的是第四季度

【答案】A

【解析】

根據(jù)圖象即可看出,華為在每個季度的銷量都最大,從而得出華為的全年銷量最大,從而得出正確;由于不知每個季度的銷量多少,從而蘋果、華為和三星在哪個季度的銷量大或小是沒法判斷的,從而得出選項,,都錯誤.

根據(jù)圖象可看出,華為在每個季度的銷量都最大,所以華為的全年銷量最大;

每個季度的銷量不知道,根據(jù)每個季度的百分比是不能比較蘋果在第二季度和第三季度銷量多少的,同樣不能判斷華為在哪個季度銷量最大,三星在哪個季度銷量最小;,都錯誤,故選

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,函數(shù)的圖象恒不在軸的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸上方交雙曲線于點(diǎn),且,圓的方程是.

(1)求雙曲線的方程;

(2)過雙曲線上任意一點(diǎn)作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;

(3)過圓上任意一點(diǎn)作圓的切線交雙曲線兩點(diǎn), 中點(diǎn)為,

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組有男女生各5名.以下莖葉圖記錄了該小組同學(xué)在一次數(shù)學(xué)測試中的成績(單位:分).已知男生數(shù)據(jù)的中位數(shù)為125,女生數(shù)據(jù)的平均數(shù)為126.8.

1)求的值;

2)現(xiàn)從成績高于125分的同學(xué)中隨機(jī)抽取兩名同學(xué),求抽取的兩名同學(xué)恰好為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意實數(shù),恒有,且當(dāng),,又.

1)判斷的奇偶性;

2)求在區(qū)間上的最大值;

3)是否存在實數(shù),使得不等式對一切都成立?若存在求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在上的函數(shù)滿足:對于任意的,當(dāng)時,都有.

(1)若,求的取值范圍;

(2)若為周期函數(shù),證明:是常值函數(shù);

(3)設(shè)恒大于零,是定義在上、恒大于零的周期函數(shù),的最大值.

函數(shù). 證明:“是周期函數(shù)”的充要條件是“是常值函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是橢圓上的一點(diǎn),為橢圓的兩焦點(diǎn),若,試求:

1)橢圓的方程;

2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的極小值;

(Ⅱ)當(dāng)時,討論的單調(diào)性;

(Ⅲ)若函數(shù)在區(qū)間上有且只有一個零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點(diǎn)的直線(傾斜角為銳角)交拋物線于,兩點(diǎn),若為線段的中點(diǎn),連接并延長交拋物線于點(diǎn),已知,則直線的斜率是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案