【題目】如圖,由A,B兩個元件分別組成串聯(lián)電路(圖(1))和并聯(lián)電路(圖(2)),觀察兩個元件正;蚴У那闆r.

1)寫出試驗的樣本空間;

2)對串聯(lián)電路,寫出事件M=“電路是通路”包含的樣本點;

3)對并聯(lián)電路,寫出事件N=“電路是斷路”包含的樣本點.

【答案】(1)詳見解析(2)詳見解析(3)詳見解析

【解析】

1A,B兩個元件均由正常或失效兩種可能,由此可得樣本空間;(2)若電路是通路,則A,B均正常;(3)若電路是斷路,則A,B均失效。

解: A,B兩個元件中每個元件都有正常(用1表示)或失效(用0表示)兩種可能結果:(1)故該試驗的樣本空間可以表示為

2)對串聯(lián)電路,只有當A,B都正常時電路才是通路,故M包含的樣本點為

3)對并聯(lián)電路,只有當AB都失效時電路才是斷路,故N包含的樣本點為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個獎杯的三視圖,試根據(jù)獎杯的三視圖計算它的表面積和體積(可用計算工具,尺寸如圖,單位:cm,π3.14,結果取整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

某建筑公司用8000萬元購得一塊空地,計劃在該地塊上建造一棟至少12層、每層4000平方米的樓房.經(jīng)初步估計得知,如果將樓房建為xx12)層,則每平方米的平均建筑費用為Q(x)=3000+50x(單位:元).為了使樓房每平方米的平均綜合費用最少,該樓房應建為多少層?每平方米的平均綜合費最小值是多少?

(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,且對任意實數(shù)恒有)成立.

(1)求函數(shù)的解析式;

(2)討論上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017-2018學年安徽省六安市第一中學高三上學期第二次月考)已知函數(shù)是偶函數(shù).

(1)的值;

(2)若函數(shù)的圖象與直線沒有交點,的取值范圍;

(3)若函數(shù),是否存在實數(shù)使得的最小值為0,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點,N是PC的中點.

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,坐標原點為.橢圓的動弦過右焦點且不垂直于坐標軸, 的中點為,過且垂直于線段的直線交射線于點

(I)證明:點在直線上;

(Ⅱ)當四邊形是平行四邊形時,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某品牌汽車的店,對最近100份分期付款購車情況進行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;

(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個正三棱柱的三視圖如圖所示,若該三棱柱的外接球的表面積為,則側視圖中的的值為 ( )

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

同步練習冊答案