已知奇函數(shù)f(x)是定義在R上的增函數(shù),數(shù)列{xn}是一個(gè)公差為2的等差數(shù)列,滿足f(x8)+f(x9)+f(x10)+f(x11)=0,則x2013的值為
 
考點(diǎn):數(shù)列與函數(shù)的綜合
專題:等差數(shù)列與等比數(shù)列
分析:設(shè)x8=a,則x9=a+2,x10=a+4,x11=a+6,則f(a)+f(a+2)+f(a+4)+f(a+6)=0,結(jié)合奇函數(shù)關(guān)于原點(diǎn)的對(duì)稱性可知,f(a)+f(a+6)=0,f(a+2)+f(a+4)=0.所以f(a+3)=0=f(0),x8=-3.設(shè)數(shù)列{xn}通項(xiàng)xn=x1+(n-1).x8=x1+14=-3.x1=-17.通項(xiàng)xn=2n-19.由此能求出x2013的值.
解答: 解:設(shè)x8=a,則x9=a+2,x10=a+4,x11=a+6,
∴f(a)+f(a+2)+f(a+4)+f(a+6)=0,
且f(a)<f(a+2)<f(a+4)<f(a+6),
∴f(a)<0且f(a+6)>0.
結(jié)合奇函數(shù)關(guān)于原點(diǎn)的對(duì)稱性可知,f(a)+f(a+6)=0,
f(a+2)+f(a+4)=0.
∴f(a+3)=0=f(0),
即a+3=0.
∴x8=-3.
設(shè)數(shù)列{xn}通項(xiàng)xn=x1+2(n-1).
∴x8=x1+14=-3.
∴x1=-17.
∴通項(xiàng)xn=2n-19.
∴x2013=2×2013-19=4007.
故答案為:4007.
點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意遞推公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x+1.
(1)求函數(shù)f(x)的最小正周期及單調(diào)減區(qū)間;
(2)f(x0)=
16
5
,x0∈[
π
4
,
π
2
],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二階矩陣M滿足M
1
0
=
2
0
,M
1
1
=
-2
-2
,求M4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|
1
|x|
-1|,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有6個(gè)不同的實(shí)數(shù)解,則b,c的取值情況可能的是:
 

①-1<b<0,c=0   ②1+b+c>0,c>0   ③1+b+c<0,c>0   ④1+b+c=0,0<c<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

知函數(shù)f(x)=
(x-a)2(x≤0)
1
x
+x+a(x>0)
的最小值為f(0),則a的取值范圍是( 。
A、[-1,2]
B、[0,2]
C、[1,2]
D、[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,若a1+a2+a3+a4+a5=
15
8
,a1a5=
9
8
,則
1
a1
+
1
a2
+
1
a3
+
1
a4
+
1
a5
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=x2-4x+5,若存在一個(gè)實(shí)數(shù)x,使a>f(x)成立,則a取值范圍是( 。
A、a>-4B、a≤4
C、a>1D、a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)球的外切正方體的全面積等于24cm2,則此球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
為單位向量,且?jiàn)A角為
3
,則向量2
a
+
b
a
的夾角大小是(  )
A、
3
B、
π
2
C、
π
3
D、
π
6

查看答案和解析>>

同步練習(xí)冊(cè)答案