2.底面為邊長是n的正方形的四棱錐的直觀圖、正視圖和俯視圖如圖所示,畫出該幾何體的側(cè)視圖,并求出該四棱錐的體積.

分析 由題意畫出該幾何體的側(cè)視圖,并判斷出側(cè)視圖的性質(zhì),由椎體的體積公式求出該四棱錐的體積.

解答 解:由題意得,該幾何體的側(cè)視圖如圖所示:
∵底面為邊長是n的正方形,且正視圖是直角邊為n的等腰三角形,
∴側(cè)視圖也是直角邊為n的等腰三角形,
又四棱錐的高是n,
∴該四棱錐的體積$V=\frac{1}{3}Sh=\frac{1}{3}×{n}^{2}×n=\frac{{n}^{3}}{3}$.

點評 本題考查了幾何體的三視圖,以及由三視圖求幾何體的體積,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求值:
(1)$\frac{{sin{{27}°}+cos{{45}°}sin{{18}°}}}{{cos{{27}°}-sin{{45}°}sin{{18}°}}}$
(2)[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]$\sqrt{2{{sin}^2}{{80}°}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}滿足a1=1,3(an-an+1)=an•an+1,n∈N+,則數(shù)列{an}的通項公式是an=$\frac{3}{n+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.用導(dǎo)數(shù)定義求函數(shù)y=f(x)=$\frac{2}{x}$+x在下列各點的導(dǎo)數(shù).
(1)x=1;
(2)x=-2;
(3)x=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某種產(chǎn)品的質(zhì)量分為優(yōu)質(zhì)、合格、次品三個等級,其數(shù)量比例依次為40%,55%,5%.其中優(yōu)質(zhì)品和合格品都能正常使用;而次品無法正常使用,廠家會無理由退貨或更換.
(Ⅰ)小李在市場上購買一件這種產(chǎn)品,求此件產(chǎn)品能正常使用的概率;
(Ⅱ)若小李購買此種產(chǎn)品3件,設(shè)其中優(yōu)質(zhì)產(chǎn)品件數(shù)為ξ,求ξ的分布列及其數(shù)學(xué)期望E(ξ)和方差D(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右焦點分別為F1,F(xiàn)2,過左焦點F1(-2,0)作x軸的垂線交橢圓于P,Q兩點,PF2與y軸交于E(0,$\frac{3}{2}$),A,B是橢圓上位于PQ兩側(cè)的動點.
(Ⅰ)求橢圓的離心率e和標準方程;
(Ⅱ)當∠APQ=∠BPQ時,直線AB的斜率KAB是否為定值,若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)定義在R上的奇函數(shù)f(x)滿足f(x)=x2-4(x>0),則f(x)>0的解集為( 。
A.(-2,2)B.(-4,4)C.(0,2)∪(4,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)又以π為周期,且在(0,$\frac{π}{2}$)上單調(diào)遞增的是( 。
A.y=|tan$\frac{x}{2}$|B.y=sinxC.y=tanxD.cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合A={x|x2-x-2<0},B={x|x2≤1},則A∪B=( 。
A.{x|-1≤x<2}B.{x|-$\frac{1}{2}$<x≤1}C.{x|x<2}D.{x|1≤x<2}

查看答案和解析>>

同步練習冊答案