分析 (Ⅰ)令g(x)=x+$\frac{a}{x}$-2,利用導數(shù)判斷g(x)的單調(diào)性,再根據(jù)符合函數(shù)判斷f(x)的單調(diào)性,根據(jù)函數(shù)的單調(diào)性即可求出函數(shù)的最值,即可求出a的值,
(Ⅱ)由由(Ⅰ)可知,函數(shù)f(x)在(2,+∞)上單調(diào)遞增,求出函數(shù)的最小值,根據(jù)存在x0∈(2,+∞),使得f(x0)<0,得到a的取值范圍.
解答 解:(Ⅰ)令g(x)=x+$\frac{a}{x}$-2,
∴g′(x)=1-$\frac{a}{{x}^{2}}$=$\frac{{x}^{2}-a}{{x}^{2}}$,
∵x∈[2,4],1<a<4,
∴x2-a>0,
∴g′(x)>0,
∴g(x)在[2,4]上單調(diào)遞增,
∴f(x)在[2,4]上單調(diào)遞增,
∴f(x)min=f(2)=ln(2+$\frac{a}{2}$-2)=ln$\frac{3}{2}$,
∴a=3,
(Ⅱ)由(Ⅰ)可知,函數(shù)f(x)在(2,+∞)上單調(diào)遞增,
∴f(x)min=f(2)=ln(2+$\frac{a}{2}$-2)=ln$\frac{a}{2}$,
∵存在x0∈(2,+∞),使得f(x0)<0,
∴l(xiāng)n$\frac{a}{2}$<0=ln1,
∴0<a<2
故a的取值范圍為(0,2)
點評 本題考查了導數(shù)的綜合應用及存在性問題的應用以及復合函數(shù)的單調(diào)性,考查了學生的運算能力和轉化能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
合一斗 | 斗麻利 | 文士生 | 講頭知尾 | 正功夫 |
115 | 230 | 115 | 345 | 460 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com