已知f(x)是定義在(-1,1)上的偶函數(shù),且在[0,1)上為增函數(shù),滿足f(x-2)-f(4-2x)<0,試確定x的取值范圍.
考點:奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系將不等式進行轉(zhuǎn)化即可得到結(jié)論.
解答: 解:∵知f(x)是定義在(-1,1)上的偶函數(shù),且在[0,1)上為增函數(shù),
∴f(x-2)-f(4-2x)<0等價為f(x-2)<f(4-2x),即f(|x-2|)<f(|4-2x|),
-1<x-2<1
-1<4-2x<1
|x-2|<|4-2x|
,
1<x<3
3
2
<x<
5
2
x≠2
,
3
2
<x<
5
2
且x≠2,
故x的取值范圍是{x|
3
2
<x<
5
2
且x≠2}.
點評:本題主要考查不等式的解法,利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系將不等式進行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a1+a2=4,a2+a3=8,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1
(1)求異面直線BA1和CC1的夾角是多少?
(2)求A1B和平面CDA1B1所成的角?
(3)求平面CDA1B1和平面ABCD所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD和側(cè)面BCC1B1都是矩形,E是CD的中點,D1E⊥CD,AB=2BC=2.
(Ⅰ)求證:BC⊥D1E;
(Ⅱ)求證:B1C∥平面BED1
(Ⅲ)若平面BCC1B1與平面BED1所成的銳二面角的大小為
π
3
,求線段D1E的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知視力正常的人,能閱讀遠處文字的視角不小于5′
(1)求距離人10m處所能閱讀的文字大小;
(2)若要看清長、寬均為5m的大字標語,求人距離標語的最遠距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:(1+
2
-1+(
2
+
3
-1+(
3
+4)-1+…+(
n
+
n+1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

小昆和小鵬兩人站成一列,背著墻,面朝太陽,小昆靠近墻,在太陽光照射下,小昆的頭部影子正好落在墻角處.如果小昆身高為1.6m,離墻距離為3m,小鵬的身高1.5m,離墻的距離為5m,則小鵬的身影是否在小昆的腳下,請通過計算說明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A′B′C′中,AB=AA′=AC=2,∠BAC=
2
3
π,點D,E分別是BC,A′B′的中點.
(Ⅰ)求證:DE∥平面ACC′A′;
(Ⅱ)求二面角B′-AD-C′的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題中,其中所有正確命題的序號是
 

①函數(shù)f(x)=
x2-3x
+3
x2-5x+4
的最小值是3.
②函數(shù)f(x)=|x2-4|,若f(m)=f(n),且0<m<n,則動點P(m,n)到直線5x+12y+39=0的最小距離是3-2
2

③命題“函數(shù)f(x)=xsinx+1,當x1,x2∈[-
π
2
,
π
2
],且|x1|>|x2|時,有f(x1)>f(x2)”是真命題.
④函數(shù)f(x)=
3
2
cos2ax+sinaxcosax-
3
2
sin2
ax+1的最小正周期是1的充要條件是a=1.
⑤已知等差數(shù)列{an}的前n項和為Sn,
OA
、
OB
為不共線的向量,又
OC
=a1
OA
+a4026
OB
,若
CA
AB
,則S4026=2013.

查看答案和解析>>

同步練習冊答案