16.一輛汽車在一條水平的公路上向正西行駛,如圖,到A處時測得公路北側(cè)一鐵塔底部C在西偏北30°的方向上,行駛200m后到達(dá)B處,測得此鐵塔底部C在西偏北75°的方向上,塔頂D的仰角為30°,則此鐵塔的高度為( 。
A.$\frac{100\sqrt{6}}{3}$mB.50$\sqrt{6}$mC.100$\sqrt{3}$mD.100$\sqrt{2}$m

分析 設(shè)此山高h(yuǎn)(m),在△BCD中,利用仰角的正切表示出BC,進(jìn)而在△ABC中利用正弦定理求得h.

解答 解:設(shè)此山高h(yuǎn)(m),則BC=$\sqrt{3}$h,
在△ABC中,∠BAC=30°,∠CBA=105°,∠BCA=45°,AB=600.
根據(jù)正弦定理得$\frac{\sqrt{3}h}{sin30°}=\frac{200}{sin45°}$,
解得h=$\frac{100\sqrt{6}}{3}$(m)
故選A.

點評 本題主要考查了解三角形的實際應(yīng)用.關(guān)鍵是構(gòu)造三角形,將各個已知條件向這個主三角形集中,再通過正弦、余弦定理或其他基本性質(zhì)建立條件之間的聯(lián)系,列方程或列式求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.sin215°-cos215°的值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)是定義在[-3,3]上的偶函數(shù),且在區(qū)間[-3,0]上是單調(diào)增函數(shù),若f(1-2m)<f(m),則實數(shù)m的取值范圍是$[-1,\frac{1}{3})∪(1,2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.當(dāng)a=3時,寫出閱讀如圖的程序框圖的過程,算出n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}滿足a1a2…an=n+1,則a3=$\frac{4}{3}$;若數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{(n+1)^{2}}$,Sn為數(shù)列{bn}的前n項和,則Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知變量x,y滿足$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤2-x}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(b>a>0)的最大值為9,則$\frac{2}{a}$+$\frac{8}$的最小值為( 。
A.1B.2C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.兩位同學(xué)一起去一家單位應(yīng)聘,面試前單位負(fù)責(zé)人對他們說:“我們要從面試的人中招聘3人,不考慮應(yīng)聘人員的水平因素,你們倆同時被招聘進(jìn)來的槪率是$\frac{1}{15}$”根據(jù)這位負(fù)責(zé)人的話可以推斷出參加面試的人數(shù)為(  )
A.10人B.12人C.15人D.18人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(1+2x24的展開式中x4的系數(shù)等于24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且CF=$\frac{1}{4}$CD,下列結(jié)論:
①∠BAE=30°,②△ABE~△AEF,③AE⊥EF,④△ADF~△ECF.
其中正確的有②③.

查看答案和解析>>

同步練習(xí)冊答案