在三角形ABC中,
BC
=
a
,
CA
=
b
,則
AB
=( 。
A、
a
-
b
B、
b
-
a
C、
a
+
b
D、-
a
-
b
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:只要將
AB
=用共起點(diǎn)C的向量表示,利用向量運(yùn)算的三角形法則解答.
解答: 解:∵
BC
=
a
,
CA
=
b
,∴
CB
=-
a
,
CA
=
b
,則
AB
=
CB
-
CA
=-
a
-
b
;
故選D.
點(diǎn)評(píng):本題考查了向量的加減運(yùn)算的三角形法則的運(yùn)用,注意有向線(xiàn)段的起點(diǎn)與終點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+cosx,則函數(shù)f(x)的一個(gè)單調(diào)遞增區(qū)間為(  )
A、(0,
π
4
)
B、(
π
4
π
2
)
C、(
π
2
4
)
D、(
4
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,將平面直角坐標(biāo)系中的格點(diǎn)(橫、縱坐標(biāo)均為整 數(shù)的點(diǎn))按如  下規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點(diǎn)(0,0)處標(biāo)0,點(diǎn)(1,0)處標(biāo)1,點(diǎn)(1,-1)處標(biāo)2,點(diǎn)(0,-1)處標(biāo)3,點(diǎn)(-1,-1)處標(biāo)4,點(diǎn)(-1,0)處標(biāo)5,…,依此類(lèi)推,則標(biāo)簽2012×2013對(duì)應(yīng)的格點(diǎn)的坐標(biāo) 為( 。
A、(-1006,1006)
B、(1005,-1006)
C、(1005,1006)
D、(1006,1006)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的首項(xiàng)為11,{bn}為等差數(shù)列且bn=an+1-an(n∈N*),若則b3=-2,b10=12,則a8=(  )
A、0B、3C、8D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,則f(x)的導(dǎo)數(shù)為f′(x),則f′(1)的值為( 。
A、eB、0C、1D、ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1+x)n的二項(xiàng)展開(kāi)式中,若只有x5的項(xiàng)的系數(shù)最大,則n的值為( 。
A、5B、6C、20D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列周期為
π
2
的函數(shù)為( 。
A、y=sin(2x+
π
6
B、y=2tan(x+
π
7
C、y=cos3x
D、y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-ax2+4.
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)y=x+1垂直,求實(shí)數(shù)a的值;
(2)在區(qū)間[1,3]內(nèi)至少存在一個(gè)實(shí)數(shù)x,使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,a6-a4=24,a3a5=64,求{an}的通項(xiàng)公式及前8項(xiàng)的和S8

查看答案和解析>>

同步練習(xí)冊(cè)答案