設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)伸長為原來的3倍的伸壓變換,則圓x2+y2=1在M的作用下的新曲線的方程是
x2
16
+
y2
9
=1
x2
16
+
y2
9
=1
分析:由M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)伸長為原來的3倍的伸壓變換,M=
40
03
,任意選取圓x2+y2=1上的一點P(x0,y0),它在矩陣M=
40
03
對應(yīng)的變換下變?yōu)镻′(x0′,y0′),能推導(dǎo)出x0=
1
4
x0,y0=
1
3
y0,由此能求出在M的作用下的新曲線的方程.
解答:解:∵設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)伸長為原來的3倍的伸壓變換,
∴M=
40
03

任意選取圓x2+y2=1上的一點P(x0,y0),它在矩陣M=
40
03

對應(yīng)的變換下變?yōu)镻'(x0′,y0′),則有
40
03
x0 
y0 
=
x0 
y0 
,
∴4x0=x0,3y0=y0,即x0=
1
4
x0,y0=
1
3
y0,
又因為點P在圓 x2+y2=1上,所以
x02
16
+
y02
9
=1,
∴在M的作用下的新曲線的方程為
x2
16
+
y2
9
=1

故答案為:
x2
16
+
y2
9
=1
點評:此題主要考查矩陣變化以及新曲線方程的求法問題,屬于綜合性的問題,計算比較簡單,但在分析上有一定的難度,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
C、已知某圓的極坐標(biāo)方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0

(Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換. 求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時寫出文字說明、證明過程或演算步驟.
21-1.(選修4-2:矩陣與變換)
設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
(1)求矩陣M的特征值及相應(yīng)的特征向量;
(2)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1在M-1的作用下的新曲線的方程.
21-2.(選修4-4:參數(shù)方程)
以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸.已知點P的直角坐標(biāo)為(1,-5),點M的極坐標(biāo)為(4,
π
2
),若直線l過點P,且傾斜角為 
π
3
,圓C以M為圓心、4為半徑.
(1)求直線l關(guān)于t的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)試判定直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-2 矩陣與變換】
設(shè)M是把坐標(biāo)平面上的點P(1,1),Q(2,-1)分別變換成點P1(2,3),Q1(4,-3).
(Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.

查看答案和解析>>

同步練習(xí)冊答案