(2012•閔行區(qū)一模)將邊長(zhǎng)分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個(gè)、第2個(gè)、…、第n個(gè)陰影部分圖形.容易知道第1個(gè)陰影部分圖形的周長(zhǎng)為8.設(shè)前n個(gè)陰影部分圖形的周長(zhǎng)的平均值為f(n),記數(shù)列{an}滿(mǎn)足an=
f(n),當(dāng)n為奇數(shù)
f(an-1) ,當(dāng)n為偶數(shù)

(1)求f(n)的表達(dá)式;
(2)寫(xiě)出a1,a2,a3的值,并求數(shù)列{an}的通項(xiàng)公式;
(3)記bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范圍.
分析:(1)由圖形觀(guān)察,得第n個(gè)陰影部分圖形的周長(zhǎng)為8n,利用等差數(shù)列的求和公式即可得到f(n)的表達(dá)式;
(2)根據(jù)題中an的表達(dá)式,不難寫(xiě)出它3項(xiàng),再分n為奇數(shù)和n為偶數(shù)兩種情況加以討論,結(jié)合等差數(shù)列的通項(xiàng)公式,可得an關(guān)于n的分段函數(shù)的表達(dá)式;
(3)利用行列式乘法法則,得原不等式有解即bn+1(bn-bn+2)>0有解,再分n為奇數(shù)和n為偶數(shù)兩種情況加以討論,最后綜合可得實(shí)數(shù)s的取值范圍.
解答:解:(1)根據(jù)題意,第1個(gè)陰影部分圖形的周長(zhǎng)為8,第2個(gè)陰影部分圖形的周長(zhǎng)為16,…,
第n個(gè)陰影部分圖形的周長(zhǎng)為8n,(2分)
故f(n)=
8+8n
2
×n
n
=4n+4
.       (4分)
(2)a1=f(1)=8,a2=f(a1)=f(8)=36,a3=f(3)=20,
①當(dāng)n為奇數(shù)時(shí),an=f(n)=4n+4            (3分)
②當(dāng)n為偶數(shù)時(shí),an=f(an-1)=4an-1+4=4[4(n-1)+4]+4=16n+4,
∴an=
4n+4      n為奇數(shù)
16n+4    n為偶數(shù)
.                  (5分)
(3)bn=an+s=
4n+4+s      n為奇數(shù)
16n+4+s    n為偶數(shù)

.
bn+1bn+1
bn+2bn
.
>0
有解,即bn+1bn-bn+1bn+2=bn+1(bn-bn+2)>0有解,
①當(dāng)n為奇數(shù)時(shí),bn+1(bn-bn+2)>0即
[16(n+1)+4+s][4n+4+s-4(n+2)-4-s]>0,
亦即16(n+1)+4+s<0有解,故s<(-16n-20)max=-36         (3分)
②當(dāng)n為偶數(shù)時(shí),bn+1(bn-bn+2)>0即
即[4(n+1)+4+s][16n+4+s-16(n+2)-4-s]>0,
于是4(n+1)+4+s<0,故s<(-4n-8)max=-16.           (5分)
欲使
.
bn+1bn+1
bn+2bn
.
>0
有解,以上兩種情況至少一個(gè)成立,
故s的取值范圍是s<-16.                            (7分)
點(diǎn)評(píng):本題以一個(gè)實(shí)際問(wèn)題為例,考查了等差數(shù)列的通項(xiàng)與求和公式、二階行列式的計(jì)算和不等式解集非空的討論等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)等差數(shù)列{an}的首項(xiàng)及公差均是正整數(shù),前n項(xiàng)和為Sn,且a1>1,a4>6,S3≤12,則a2012=
4024
4024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)在一圓周上給定1000個(gè)點(diǎn).(如圖)取其中一點(diǎn)標(biāo)記上數(shù)1,從這點(diǎn)開(kāi)始按順時(shí)針?lè)较驍?shù)到第二個(gè)點(diǎn)標(biāo)記上數(shù)2,從標(biāo)記上2的點(diǎn)開(kāi)始按順時(shí)針?lè)较驍?shù)到第三個(gè)點(diǎn)標(biāo)記上數(shù)3,繼續(xù)這個(gè)過(guò)程直到1,2,3,…,2012都被標(biāo)記到點(diǎn)上,圓周上這些點(diǎn)中有些可能會(huì)標(biāo)記上不止一個(gè)數(shù),在標(biāo)記上2012的那一點(diǎn)上的所有標(biāo)記的數(shù)中最小的是
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)x1、x2是關(guān)于x的方程x2+mx+
1+m2
=0
的兩個(gè)不相等的實(shí)數(shù)根,那么過(guò)兩點(diǎn)A(x1,
x
2
1
)
B(x2,
x
2
2
)
的直線(xiàn)與圓x2+y2=1的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長(zhǎng)為2
3
,漸近線(xiàn)方程是y=±
3
x
,O為坐標(biāo)原點(diǎn),直線(xiàn)y=kx+m(k,m∈R)與雙曲線(xiàn)C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷