【題目】設命題p:x0∈(0,+∞),3 +x0=2016,命題q:a∈(0,+∞),f(x)=|x|﹣ax,(x∈R)為偶函數(shù),那么,下列命題為真命題的是( )
A.p∧q
B.(¬p)∧q
C.p∧(¬q)
D.(¬p)∧(¬q)
【答案】C
【解析】解:命題p:令f(x)=3x+x﹣2016,則f(6)=﹣1284<0,f(7)=174>0,因此x0∈(0,+∞),3 +x0=2016,是真命題.
命題q:取a=1,則f(x)=|x|﹣x= ,因此函數(shù)f(x)是非奇非偶函數(shù).因此命題q是假命題.
下列命題為真命題的是p∧(¬q).
故選:C.
【考點精析】本題主要考查了復合命題的真假的相關知識點,需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中點,△A1MC1是等腰三角形,D為CC1的中點,E為BC上一點.
(1)若DE∥平面A1MC1 , 求 ;
(2)求直線BC和平面A1MC1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2+bx﹣1(b∈R).
(1)若函數(shù)y=f(x)在[1,+∞)上單調,求b的取值范圍;
(2)若函數(shù)y=|f(x)|﹣2有四個零點,求b的取值范圍;
(3)若函數(shù)y=|f(x)|在[0,|b|)上的最大值為g(b),求g(b)的表達式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知BD=8,AD=4,AB=2DC=4 .
(1)設M是PC上的一點,求證:平面MBD⊥平面PAD;
(2)求四棱錐P﹣ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1時有極值0.
(1)求常數(shù) a,b的值;
(2)方程f(x)=c在區(qū)間[﹣4,0]上有三個不同的實根時,求實數(shù)c的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的減函數(shù),其導函數(shù)f′(x)滿足 +x<1,則下列結論正確的是( )
A.對于任意x∈R,f(x)<0
B.對于任意x∈R,f(x)>0
C.當且僅當x∈(﹣∞,1),f(x)<0
D.當且僅當x∈(1,+∞),f(x)>0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ,其中a為大于零的常數(shù)..
(1)若函數(shù)f(x)在區(qū)間[1,+∞)內單調遞增,求a的取值范圍;
(2)求函數(shù)f(x)在區(qū)間[1,2]上的最小值;
(3)求證:對于任意的n∈N* , 且n>1時,都有l(wèi)nn> + +…+ 成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點O為△ABC的外心,角A,B,C的對邊分別滿足a,b,c, (Ⅰ)若3 +4 +5 = ,求cos∠BOC的值;
(Ⅱ)若 = ,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com