【題目】數(shù)列{an}中,a1=8,a4=2,且滿足an+2-2an+1+an=0.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn.
【答案】(1)an=10-2n;(2).
【解析】試題分析:(1)首先判斷數(shù)列{an}為等差數(shù)列,由a1=8,a4=2求出公差,代入通項(xiàng)公式即得.
(2)首先判斷哪幾項(xiàng)為非負(fù)數(shù),哪些是負(fù)數(shù),從而得出當(dāng)n>5時(shí),Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)求出結(jié)果;當(dāng)n≤5時(shí),Sn=|a1|+|a2|+…+|an|=a1+a2+…+an當(dāng),再利用等差數(shù)列的前n項(xiàng)和公式求出答案.
試題解析:
(1)an+2-2an+1+an=0,
所以an+2-an+1=an+1-an,
所以{an+1-an}為常數(shù)列,
所以{an}是以a1為首項(xiàng)的等差數(shù)列.
設(shè)an=a1+(n-1)d,
則a4=a1+3d,
所以d==-2,
所以an=10-2n.
(2)因?yàn)?/span>an=10-2n,
令an=0,得n=5.
當(dāng)n>5時(shí),an<0;
當(dāng)n=5時(shí),an=0;
當(dāng)n<5時(shí),an>0.
令Tn=a1+a2+…+an,則Tn=-n2+9n.
所以當(dāng)n>5時(shí),
Sn=|a1|+|a2|+…+|an|
=a1+a2+…+a5-(a6+a7+…+an)
=T5-(Tn-T5)=2T5-Tn=n2-9n+40,
當(dāng)n≤5時(shí),
Sn=|a1|+|a2|+…+|an|
=a1+a2+…+an=Tn=9n-n2.
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.
(1)求證:EF∥平面PAB;
(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新和團(tuán)隊(duì)建設(shè)能力的培養(yǎng),促進(jìn)教育教學(xué)改革,市教育局舉辦了全市中學(xué)生創(chuàng)新知識(shí)競(jìng)賽,某中學(xué)舉行了選拔賽,共有150名學(xué)生參加,為了了解成績(jī)情況,從中抽取50名學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請(qǐng)你根據(jù)尚未完成的頻率分布表,解答下列問題:
(1)完成頻率分布表(直接寫出結(jié)果);
(2)若成績(jī)?cè)?0.5分以上的學(xué)生獲一等獎(jiǎng),試估計(jì)全校獲一等獎(jiǎng)的人數(shù),現(xiàn)在從全校所有獲一等獎(jiǎng)的同學(xué)中隨機(jī)抽取2名同學(xué)代表學(xué)校參加競(jìng)賽,某班共有2名同學(xué)榮獲一等獎(jiǎng),求該班同學(xué)恰有1人參加競(jìng)賽的概率.
分組 | 頻數(shù) | 頻率 | |
第1組 | [60.5,70.5) | 0.26 | |
第2組 | [70.5,80.5) | 17 | |
第3組 | [80.5,90.5) | 18 | 0.36 |
第4組 | [90.5,100.5] | ||
合計(jì) | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤和投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤?
②問:如果你是廠長(zhǎng),怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項(xiàng)和,則稱是“回歸數(shù)列”.
()①前項(xiàng)和為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說明理由.②通項(xiàng)公式為的數(shù)列是否是“回歸數(shù)列”?并請(qǐng)說明理由;
()設(shè)是等差數(shù)列,首項(xiàng),公差,若是“回歸數(shù)列”,求的值.
()是否對(duì)任意的等差數(shù)列,總存在兩個(gè)“回歸數(shù)列”和,使得成立,請(qǐng)給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(a>b>0)的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合,且橢圓短軸的兩個(gè)端點(diǎn)與點(diǎn)F構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過點(diǎn)(1,0)的直線l與橢圓交于不同的兩點(diǎn)P,Q,試問在x軸上是否存在定點(diǎn)E(m,0),使恒為定值?若存在,求出E的坐標(biāo),并求出這個(gè)定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十八大以來,我國精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬人以上的目標(biāo),力爭(zhēng)2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問題,市扶貧辦近三年來,每半年對(duì)貧困戶(用表示,單位:萬戶)進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從2016年6月底到2019年6月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號(hào)表示,例如:2016年12月底(時(shí)間序號(hào)為2)貧困戶為5.2萬戶.
(1)求關(guān)于的線性回歸方程,并預(yù)測(cè)到2020年12月底,該市能否實(shí)現(xiàn)貧困戶全部脫貧;
(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在2019年6月底時(shí),對(duì)全市貧困戶隨機(jī)抽取了100戶貧困戶,對(duì)每個(gè)家庭最主要經(jīng)濟(jì)收入來源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對(duì)全市所有貧困戶中,家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶,每一名農(nóng)業(yè)技術(shù)人員對(duì)口幫扶貧困戶90戶,則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對(duì)家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對(duì)口幫扶?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,公園內(nèi)有一塊邊長(zhǎng)為的正三角形空地,擬改建成花園,并在其中建一直道方便花園管理. 設(shè)分別在上,且均分三角形的面積.
(1)設(shè)(),,試將表示為的函數(shù)關(guān)系式;
(2)若是灌溉水管,為節(jié)約成本,希望其最短,的位置應(yīng)在哪里?若是參觀路線,希望其最長(zhǎng),的位置應(yīng)在哪里?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,AC=3, BC=2,P是△ABC內(nèi)的一點(diǎn).
(1)若△BPC是以BC為斜邊的等腰直角三角形,求PA長(zhǎng);
(2)若∠BPC=,求△PBC面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com