【題目】如圖所示,已知焦點為的拋物線上有一動點,過點作拋物線的切線交軸于點.
(1)判斷線段的中垂線是否過定點,若是求出定點坐標,若不是說明理由;
(2)過點作的垂線交拋物線于另一點,求面積的最小值.
【答案】(1)存在,過定點;(2).
【解析】
(1)設直線的方程為與拋物線方程聯(lián)立方程組,消元后由判別式為0得,這樣可用表示出點坐標,從而也可得點坐標,然后求出中垂線方程后可得定點;
(2)在(1)基礎上,求出方程,與拋物線方程聯(lián)立求得點坐標后,計算出,,從而得面積為的函數,其中,利用導數可求得其最小值.
(1)設直線的方程為和拋物線方程聯(lián)立得:,
由,得,則的解為,由得,,得,在中令得,所以,
中點為,所以線段的中垂線方程為,
所以線段的中垂線過定點.
(2)直線的方程為和拋物線方程聯(lián)立得:
,,
,.
所以的面積為,,
時,,單調遞減,時,,單調遞增,
所以時,.
科目:高中數學 來源: 題型:
【題目】已知雙曲線: 的左、右焦點分別為, 為坐標原點, 是雙曲線上在第一象限內的點,直線分別交雙曲線左、右支于另一點, ,且,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某車間用一臺包裝機包裝葡萄糖,每袋葡萄糖的重量是一個隨機變量,它服從正態(tài)分布.當機器工作正常時,每袋葡萄糖平均重量為0.5kg,標準差為0.015kg.
(1)已知包裝每袋葡萄糖的成本為1元,若發(fā)現(xiàn)包裝好的葡萄糖重量異常,則需要將該袋葡萄糖進行重新包裝,假設重新包裝后的葡萄糖重量正常.若某袋葡萄糖的重量滿足,則認為該袋葡萄糖重量正常. 問:在機器工作正常的情況下,至少包裝多少袋葡萄糖才能使“至少有一袋包裝好的葡萄糖重量正常”的概率大于0.98?并求出相應成本的最小期望值.
(2)某日開工后, 為檢査該包裝機工作是否正常, 隨機地抽取它所包裝的葡萄糖9袋,若抽取的9袋葡萄糖稱得凈重(kg)為:0.496, 0.508, 0.524, 0.519, 0.495, 0.510, 0.522, 0.513, 0.512.用樣本平均數作為的估計值,以作為檢驗統(tǒng)計量,其中為樣本總數,服從正態(tài)分布,且.
①若機器工作正常時, 每袋葡萄糖的重量服從的正態(tài)分布曲線如下圖所示,且經計算得上述樣本數據的標準差0.022.請在下圖(機器正常工作時的正態(tài)分布曲線)中,繪制出以該樣本作為估計得到的每袋葡萄糖所服從的正態(tài)分布曲線的草圖.
②若,就推斷該包裝機工作異常,這種推斷犯錯誤的概率不超過,試以95%的可靠性估計該包裝機工作是否正常.
附: 若隨機變量服從正態(tài)分布:,
參考數據:;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設,是拋物線上的兩個不同的點,是坐標原點.若直線與的斜率之積為,則( ).
A.B.以為直徑的圓的面積大于
C.直線過定點D.點到直線的距離不大于2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等差數列中,已知.在①,②,③這三個條件中任選一個補充在第(2)問中,并對其求解.
(1)求數列的通項公式;
(2)若___________,求數列的前項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙3人站到共有6級的臺階上,若每級臺階最多站2人,同一級臺階上的人不區(qū)分站的位置,則不同的站法總數是( )
A.90B.120C.210D.216
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,上頂點為M,過點M且斜率為的直線與交于另一點N,過原點的直線l與交于P,Q兩點
(1)求周長的最小值:
(2)是否存在這樣的直線,使得與直線平行的弦的中點都在該直線上?若存在,求出該直線的方程:若不存在,請說明理由.
(3)直線l與線段相交,且四邊形的面積,求直線l的斜率k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com