【題目】已知橢圓的離心率為,長軸長為,直線交橢圓于不同的兩點(diǎn).

1)求橢圓的方程;

2)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));

3)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

【答案】1;(2;(3.

【解析】

1)由題意結(jié)合橢圓的性質(zhì)可得,利用求得后即可得解;

2)由題意直線,設(shè)點(diǎn),聯(lián)立方程可得,,代入后,化簡即可得,即可得解;

3)由題意結(jié)合點(diǎn)到直線的距離公式可得,聯(lián)立方程組可得,,進(jìn)而可得,分、討論,利用基本不等式即可得解.

1)設(shè)橢圓的半焦距為,

,解得,所以,

所以橢圓方程為

2)當(dāng)時(shí),直線,設(shè)點(diǎn),

,化簡可得,

,

所以,,

所以

,

所以;

3)由坐標(biāo)原點(diǎn)到直線的距離為,可得,

所以,

,化簡可得,

,

所以,,

所以

,

當(dāng)時(shí),;

當(dāng)時(shí),,

因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,

所以,此時(shí)

綜上,,

所以面積的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次數(shù)學(xué)考試中,小江的成績在90分以上的概率是0.25,在的概率是0.48,在的概率是0.11,在的概率是0.09,在60分以下的概率是0.07.計(jì)算:

1)小江在此次數(shù)學(xué)考試中取得80分及以上的概率;

2)小江考試及格(成績不低于60分)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于多項(xiàng)式的展開式,下列結(jié)論正確的是(

A.各項(xiàng)系數(shù)之和為1B.各項(xiàng)系數(shù)的絕對值之和為

C.不存在常數(shù)項(xiàng)D.的系數(shù)為40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),且其中一個(gè)焦點(diǎn)的坐標(biāo)為.

(1)求橢圓的方程;

(2)過橢圓右焦點(diǎn)的直線與橢圓交于兩點(diǎn),在軸上是否存在點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出如下四個(gè)命題:①若“”為假命題,則均為假命題;②命題“若,則”的否命題為“若,則”; ③“,則”的否定是“,則”;④在中,“”是“”的充要條件.其中正確的命題的個(gè)數(shù)是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投次;在處每投進(jìn)一球得分,在處每投進(jìn)一球得分;如果前兩次得分之和超過分即停止投籃,否則投第三次.同學(xué)在處的命中率0,在處的命中率為,該同學(xué)選擇先在處投一球,以后都在處投,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為






Z|X|X|K]

]






1)求的值;

2)求隨機(jī)變量的數(shù)學(xué)期望;

3)試比較該同學(xué)選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級(jí)共有800名學(xué)生參加了數(shù)學(xué)測驗(yàn)(滿分150分),已知這800名學(xué)生的數(shù)學(xué)成績均不低于90分,將這800名學(xué)生的數(shù)學(xué)成績分組如:,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是( )

;②這800名學(xué)生中數(shù)學(xué)成績在110分以下的人數(shù)為160; ③這800名學(xué)生數(shù)學(xué)成績的中位數(shù)約為121.4;④這800名學(xué)生數(shù)學(xué)成績的平均數(shù)為125.

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個(gè)橢圓的在第一象限的交點(diǎn)為A,直線l經(jīng)過Ω在y軸正半軸上的頂點(diǎn)B且與直線OA(O為坐標(biāo)原點(diǎn))垂直,l與Ω的另一個(gè)交點(diǎn)為C,l與W交于M,N兩點(diǎn).

(1)求W的標(biāo)準(zhǔn)方程:

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍,并證明:.

查看答案和解析>>

同步練習(xí)冊答案