7.已知集合M={x|x2+x-2<0},N={x|log2x<1},則M∩N=( 。
A.(-2,1)B.(-1,2)C.(0,1)D.(1,2)

分析 利用交集的性質(zhì)和不等式的性質(zhì)求解.

解答 解:集合M={x|x2+x-2<0}=(-2,1),N={x|log2x<1}=(0,2),
則M∩N=(0,1),
故選:C.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認真審題,注意不等式性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=sin2x-2cosx的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,a、b、c分別為內(nèi)角A、B、C對邊,且2cos(A+2C)+4sinBsinC=1.
(1)求A;
(2)若a=3$\sqrt{6}$,cos$\frac{B}{2}$=$\frac{2\sqrt{2}}{3}$,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為梯形,AB∥DC,∠ABC=90°,且PA=AB=BC=$\frac{1}{2}$DC=1,點E在線段PB上,且EB=$\frac{1}{2}$PE.試用向量法解決如下問題:
(1)求證:PD∥平面AEC.
(2)求銳二面角A-CE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知a,b,c是△ABC的三邊,若滿足a2+b2=c2,即${(\frac{a}{c})^2}+{(\frac{c})^2}=1$,△ABC為直角三角形,類比此結(jié)論:若滿足an+bn=cn(n∈N,n≥3)時,△ABC的形狀為銳角三角形.(填“銳角三角形”,“直角三角形”或“鈍角三角形”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}-1\\ lnx\end{array}\right.$$\begin{array}{l}(x<1)\\(x≥1)\end{array}$,那么f(ln2)的值是( 。
A.0B.1C.ln(ln2)D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.F1、F2是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的兩個焦點,點P在雙曲線上且滿足|PF1|•|PF2|=32,則∠F1PF2是(  )
A.鈍角B.直角C.銳角D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.把3個不同的球放入3個不同的盒子中,恰有一個空盒的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.(x-2y)5展開式的x3y2的系數(shù)是( 。
A.-10B.10C.-40D.40

查看答案和解析>>

同步練習冊答案