【題目】已知函數(shù) 的最小正周期為4π,則( )
A.函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)
B.函數(shù)f(x)的圖象關(guān)于直線(xiàn) 對(duì)稱(chēng)
C.函數(shù)f(x)圖象上的所有點(diǎn)向右平移 個(gè)單位長(zhǎng)度后,所得的圖象關(guān)于原點(diǎn)對(duì)稱(chēng)
D.函數(shù)f(x)在區(qū)間(0,π)上單調(diào)遞增
【答案】C
【解析】解:函數(shù) 的最小正周期為4π,
∴ ,
可得ω= .
那么f(x)=sin( ).
由對(duì)稱(chēng)中心橫坐標(biāo)方程: ,k∈Z,
可得:x=2kπ
∴A不對(duì);
由對(duì)稱(chēng)軸方程: = ,k∈Z,
可得:x=2k ,k∈Z,
∴B不對(duì);
函數(shù)f(x)圖象上的所有點(diǎn)向右平移 個(gè)單位,可得:sin[ (x﹣ ) ]=sin2x,圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
∴C對(duì).
令 ≤ ,k∈Z,
可得: ≤x≤
∴函數(shù)f(x)在區(qū)間(0,π)上不是單調(diào)遞增.
∴D不對(duì);
故選C
函數(shù) 的最小正周期為4π,求出ω,可得f(x)解析式,對(duì)各選項(xiàng)進(jìn)行判斷即可
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16
B組:12,13,15,16,17,14,a
假設(shè)所有病人的康復(fù)時(shí)間互相獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.
(Ⅰ)求甲的康復(fù)時(shí)間不少于14天的概率;
(Ⅱ)如果人康復(fù)時(shí)間的方差相等?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,設(shè)邊a,b,c所對(duì)的角為A,B,C,且A,B,C都不是直角,(bc﹣8)cosA+accosB=a2﹣b2 . (Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若 ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=eax+λlnx,其中a<0,0<λ< ,e是自然對(duì)數(shù)的底數(shù)
(1)求證:函數(shù)f(x)有兩個(gè)極值點(diǎn);
(2)若﹣e≤a<0,求證:函數(shù)f(x)有唯一零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù) 的最大值為2,它的最小正周期為2π. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=4,BC=2,D,E分別為邊AC,AB的中點(diǎn),點(diǎn)F,G分別為線(xiàn)段CD,BE的中點(diǎn).將△ADE沿DE折起到△A1DE的位置,使∠A1DC=60°.點(diǎn)Q為線(xiàn)段A1B上的一點(diǎn),如圖2.
(Ⅰ)求證:A1F⊥BE;
(Ⅱ)線(xiàn)段A1B上是否存在點(diǎn)Q使得FQ∥平面A1DE?若存在,求出A1Q的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)當(dāng) 時(shí),求直線(xiàn)GQ與平面A1DE所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)= 有最大值,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.[﹣2,+∞)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量y(g)與尺寸x(mm)之間近似滿(mǎn)足關(guān)系式y(tǒng)=axb(a,b為大于0的常數(shù)).現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:
尺寸(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量(g) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
對(duì)數(shù)據(jù)作了初步處理,相關(guān)統(tǒng)計(jì)量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(Ⅰ)根據(jù)所給數(shù)據(jù),求y關(guān)于x的回歸方程;
(Ⅱ)按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間( , )內(nèi)時(shí)為優(yōu)等品.現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記ξ為取到優(yōu)等品的件數(shù),試求隨機(jī)變量ξ的分布列和期望.
附:對(duì)于一組數(shù)據(jù)(v1 , u1),(v2 , u2),…,(vn , un),其回歸直線(xiàn)u=α+βv的斜率和截距的最小二乘估計(jì)分別為 = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體ABCDE中,AB=AC,平面BCDE⊥平面ABC,BE∥CD,CD⊥BC,BE=1,BC=2,CD=3,M為BC的中點(diǎn).
(1)若N是棱AE上的動(dòng)點(diǎn),求證:DE⊥MN;
(2)若平面ADE與平面ABC所成銳二面角為60°,求棱AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com