如圖1,在平面內(nèi),的矩形,是正三角形,將沿折起,使如圖2,的中點,設(shè)直線過點且垂直于矩形所在平面,點是直線上的一個動點,且與點位于平面的同側(cè)。

(1)求證:平面;
(2)設(shè)二面角的平面角為,若,求線段長的取值范圍。
(1)連接,,平面在正中,的中點,平面
(2))設(shè)建立空間直角坐標系,如圖,




設(shè)平面的一個法向量為



設(shè)平面的一個法向量為


,

化簡得
解得因此,
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在正四棱柱中,,點的中點,點上,設(shè)二面角的大小為
(1)當時,求的長;
(2)當時,求的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖(1)是一正方體的表面展開圖,是兩條面對角線,請在圖(2)的正方體中將畫出來,并就這個正方體解決下面問題.

(Ⅰ)求證:平面;
(Ⅱ)求證:⊥平面
(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知菱形的邊長為,,.將菱形沿對角線折起,使,得到三棱錐.
(Ⅰ)若點是棱的中點,求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)設(shè)點是線段上一個動點,試確定點的位置,使得,并證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)
如圖,在四棱錐V-ABCD中底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD

(1)證明:AB;         
(2)求面VAD與面VDB所成的二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,P是正三角形ABC所在平面外一點,M、N分別是AB和PC的中點,且PA=PB=PC=AB=a。

(1)求證:MN是AB和PC的公垂線
(2)求異面直線AB和PC之間的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐的底面為菱形,平面,分別為的中點,

(Ⅰ)求證:平面
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)
如圖,在三棱柱中,已知側(cè)面。

(1)求直線與底面ABC所成角正切值;
(2)在棱(不包含端點上確定一點的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則在內(nèi)過點B的所有直線中(    )
A.不一定存在與平行的直線B.只有兩條與平行的直線
C.存在無數(shù)條與平行的直線D.存在唯一一條與平行的直線

查看答案和解析>>

同步練習冊答案