14.已知F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點,A是其上頂點,且△AF1F2是等腰直角三角形,延長AF2與橢圓C交于另一點B,若△AF1B的面積是8,則橢圓C的方程是$\frac{x^2}{{{{12}^{\;}}}}+\frac{y^2}{6}=1$.

分析 由△AF1F2是等腰直角三角形,可得b=c,可設(shè)橢圓的標準方程為:$\frac{{x}^{2}}{{2b}^{2}}+\frac{{y}^{2}}{^{2}}=1$(b>0).在Rt△ABF1中,由勾股定理可得:丨AF12+|AB|2=丨F2B丨2,|AF2|=|AF1|=$\sqrt{2}$b,設(shè)|BF2|=m,則|BF1|=2a-m=2$\sqrt{2}$b-m,2b2+($\sqrt{2}$b+m)2=(2$\sqrt{2}$b-m)2,又S=$\frac{1}{2}$丨AF1丨•丨AB丨=$\frac{1}{2}$×$\sqrt{2}$($\sqrt{2}$b+m)=8,聯(lián)立解出即可得出b2,即可求得橢圓C的標準方程.

解答 解:∵△AF1F2是等腰直角三角形,b=c,
可設(shè)橢圓的標準方程為:$\frac{{x}^{2}}{{2b}^{2}}+\frac{{y}^{2}}{^{2}}=1$(b>0).
在Rt△ABF1中,由勾股定理可得:丨AF12+|AB|2=丨F2B丨2,
|AF2|=|AF1|=$\sqrt{2}$b,設(shè)|BF2|=m,則|BF1|=2a-m=2$\sqrt{2}$b-m,
代入可得:2b2+($\sqrt{2}$b+m)2=(2$\sqrt{2}$b-m)2,
又△AF1B的面積S=$\frac{1}{2}$丨AF1丨•丨AB丨=$\frac{1}{2}$×$\sqrt{2}$($\sqrt{2}$b+m)=8,
聯(lián)立解得:b2=6,
∴橢圓的標準方程為:$\frac{x^2}{{{{12}^{\;}}}}+\frac{y^2}{6}=1$.
故答案為:$\frac{x^2}{{{{12}^{\;}}}}+\frac{y^2}{6}=1$.

點評 本題考查了橢圓的定義標準方程及其性質(zhì)、勾股定理、三角形的面積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某高中采取分層抽樣的方法從應(yīng)屆高二學(xué)生中按照性別抽出20名學(xué)生作為樣本,其選報文科理科的情況如表所示.
  性別
科目
文科25
理科103
(1)畫出列聯(lián)表的等高條形圖,并通過圖形判斷選報文理科與性別是否有關(guān)系;(須說明理由)
(2)用獨立性檢驗的方法分析有多大的把握認為該中學(xué)的高三學(xué)生選報文理科與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x2+alog2(x2+2)+a2-2有唯一零點,則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓O的半徑為1,PA,PB為該圓的兩條切線,A,B為兩切點,求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值( 。
A.2$\sqrt{2}$-3B.2$\sqrt{2}$-1C.2$\sqrt{2}$+3D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.觀察下列的規(guī)律:$\frac{1}{1}$,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,$\frac{1}{4}$,$\frac{2}{3}$,$\frac{3}{2}$,$\frac{4}{1}$,…則第89個是( 。
A.$\frac{1}{8}$B.$\frac{2}{13}$C.$\frac{11}{3}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{3}+{y^2}$=1,斜率為1的直線l與橢圓C交于A,B兩點,且|AB|=$\frac{{3\sqrt{2}}}{2}$,則直線l的方程為y=x±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,且AB=AC=2,O為AC的中點,PO⊥平面ABCD,M為PD的中點.
(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)若三棱錐D-MAC的體積為$\frac{\sqrt{3}}{6}$,求平面MAC與平面PAB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校在高二年級實行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級1800名學(xué)生的數(shù)學(xué)選課人數(shù)統(tǒng)計如表:
課程數(shù)學(xué)1數(shù)學(xué)2數(shù)學(xué)3數(shù)學(xué)4數(shù)學(xué)5合計
選課人數(shù)1805405403601801800
為了了解數(shù)學(xué)成績與學(xué)生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學(xué)生中抽取了10人進行分析.
(1)從選出的10名學(xué)生中隨機抽取3人,求這3人中至少有2人選擇數(shù)學(xué)2的概率;
(2)從選出的10名學(xué)生中隨機抽取3人,記這3人中選擇數(shù)學(xué)2的人數(shù)為X,選擇數(shù)學(xué)1的人數(shù)為Y,設(shè)隨機變量ξ=X-Y,求隨機變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知函數(shù),,(為自然對數(shù)的底數(shù)),且曲線在坐標原點處的切線相同.

(1)求的最小值;

(2)若時,恒成立,試求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案