曲線,曲線.自曲線上一點的兩條切線切點分別為.

(1)若點的縱坐標為,求;
(2)求的最大值.
(1)0(2)

試題分析:解:(1)
,過點的切線為,過點的切線為
,


(2)設(shè):
,,則,

,


點評:求關(guān)于直線與曲線相交的問題,在求交點時,有時利用根與系數(shù)的關(guān)系式:)能使問題簡化。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:的離心率為,右焦點為F,且橢圓E上的點到點F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點分別為A,B,過點A的直線l與橢圓E及直線x=8分別相交于點M,N.
(。┊(dāng)過A,F(xiàn),N三點的圓半徑最小時,求這個圓的方程;
(ⅱ)若,求△ABM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點是雙曲線右支上一點,、分別為雙曲線的左、右焦點,點到△三邊的距離相等,若成立,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,設(shè)點),直線:,點在直線上移動,是線段軸的交點, 過、分別作直線,使, .

(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設(shè)切點為、,求證:直線恒過一定點;
(3)對(2)求證:當(dāng)直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N  (點M在點N的右側(cè)),且。橢圓D:的焦距等于,且過點

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,直線交拋物線于兩點,且

(1)求拋物線的方程;
(2)若點是拋物線上的動點,過點的拋物線的切線與直線交于點,問在軸上是否存在定點,使得?若存在,求出該定點,并求出的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知離心率為的橢圓上的點到左焦點的最長距離為

(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦,若點軸上,且使得的一條內(nèi)角平分線,則稱點為該橢圓的“左特征點”,求橢圓的“左特征點”的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別為雙曲線a>0,b>0)的左、右焦點,為雙曲線左支上的任意一點,若的最小值為,則雙曲線離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P是以F1、F2為焦點的橢圓上一點,且則該橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案