【題目】第七屆世界軍人運動會(7th CISM Military World Games) ,簡稱"武漢軍運會”,于2019年10月18日至27日在中國武漢舉行,共設置射擊、游泳、田徑籃球等27個大項、329個小項.來自100多個國家的近萬名現(xiàn)役軍人同臺競技.會議期間,某公司欲采購海南某水果種植基地的水果,公司王總經理與該種植基地的負責人張老板商定一次性采購一種水果的采購價(千元/噸)與采購量(噸)之間的函數(shù)關系的圖象如圖中的折線所示(不包含端點,但包含端點).

(1)求之間的函數(shù)關系式;

(2)已知該水果種植基地種植該水果的成本是8千元/噸,那么王總經理的采購量為多少時,該水果基地在這次買賣中所獲得利潤最大?最大利潤是多少?

【答案】(1);(2)采購量為12噸時,最大利潤為72千元

【解析】

1)根據(jù)圖像,設出解析式,待定系數(shù)求解即可;

2)根據(jù)題意,分段求解利潤的最大值,取兩者中較大者即可.

(1)當時,;

時,設滿足的函數(shù)關系式為,

解得

所以.

綜上,

(2)當時,

該水果種植基地獲得的利潤,

此時該水果種植基地獲得的最大利潤為64千元;

時,

該水果種植基地獲得的利潤為

所以當時,利潤取得最大值,最大值為72千元.

因為72千元>64千元,

所以當王總經理采購量為12噸時,該水果種植基地在這次買賣中所獲得的利潤最大,最大利潤為72千元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】1)已知,求的定義域并判斷奇偶性.

2)已知奇函數(shù)定義域為R,時,,求解析式.

3)已知函數(shù),求單調增區(qū)間和減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列事件A,B是獨立事件的是(  )

A. 一枚硬幣擲兩次,A=“第一次為正面向上”,B=“第二次為反面向上”

B. 袋中有兩個白球和兩個黑球,不放回地摸兩球,A=“第一次摸到白球”,B=“第二次摸到白球”

C. 擲一枚骰子,A=“出現(xiàn)點數(shù)為奇數(shù)”,B=“出現(xiàn)點數(shù)為偶數(shù)”

D. A=“人能活到20歲”,B=“人能活到50歲”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角A,BC的對邊分別為a,b,c,,且,,則的面積為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》卷五《商功》中有如下敘述今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈“芻甍”指的是底面為矩形的對稱型屋脊狀的幾何體,“下廣三丈”是指底面矩形寬三丈,“袤四丈”是指底面矩形長四丈,“上袤二丈”是指脊長二丈,“無寬”是指脊無寬度,“高一丈”是指幾何體的高為一丈現(xiàn)有一個芻甍如圖所示,下廣三丈,袤四丈,上袤三丈,無廣,高二丈,則該芻甍的外接球的表面積為_______________平方丈

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》卷五《商功》中有如下敘述今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高一丈“芻甍”指的是底面為矩形的對稱型屋脊狀的幾何體,“下廣三丈”是指底面矩形寬三丈,“袤四丈”是指底面矩形長四丈,“上袤二丈”是指脊長二丈,“無寬”是指脊無寬度,“高一丈”是指幾何體的高為一丈現(xiàn)有一個芻甍如圖所示,下廣三丈,袤四丈,上袤三丈,無廣,高二丈,則該芻甍的外接球的表面積為_______________平方丈

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某冷飲店的經營狀況,隨機記錄了該店月的月營業(yè)額(單位:萬元)與月份的數(shù)據(jù),如下表:

(1)求關于的回歸直線方程

(2)若在這樣本點中任取兩點,求恰有一點在回歸直線上的概率.

附:回歸直線方程中,

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,邊長為4的正方形中,半徑為1的動圓Q的圓心Q在邊CDDA上移動(包含端點A,C,D),P是圓Q上及其內部的動點,設,的取值范圍是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

同步練習冊答案