【題目】對正整數(shù)n,設(shè)曲線y=xn(1﹣x)在x=2處的切線與y軸交點(diǎn)的縱坐標(biāo)為an , 則數(shù)列 的前n項(xiàng)和的公式是(
A.2n
B.2n﹣2
C.2n+1
D.2n+1﹣2

【答案】D
【解析】解:∵y'|x=2=﹣2n1(n+2), ∴切線方程為:y+2n=﹣2n1(n+2)(x﹣2),
令x=0,求出切線與y軸交點(diǎn)的縱坐標(biāo)為y0=(n+1)2n ,
所以 ,則數(shù)列 的前n項(xiàng)和
【考點(diǎn)精析】通過靈活運(yùn)用導(dǎo)數(shù)的幾何意義和數(shù)列的前n項(xiàng)和,掌握通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時,直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時,函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≤x﹣2}.
(1)求A∩(UB);
(2)若函數(shù)f(x)=lg(2x+a)的定義域?yàn)榧螩,滿足AC,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是y=f(x)的導(dǎo)函數(shù)的圖象,現(xiàn)有四種說法: 1)f(x)在(﹣2,1)上是增函數(shù);
2)x=﹣1是f(x)的極小值點(diǎn);
3)f(x)在(﹣1,2)上是增函數(shù);
4)x=2是f(x)的極小值點(diǎn);
以上說法正確的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且EH∥FG.求證:EH∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其定義如下表:則方程g(f(x))=x的解集為(

x

1

2

3

f(x)

2

3

1

x

1

2

3

g(x)

3

2

1


A.{1}
B.{2}
C.{3}
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(sinx+cosx)2+2cos2x
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)求使f(x)≥3成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=x2﹣(2a+1)x+alnx (Ⅰ) 當(dāng)a=1時,求函數(shù)g(x)的單調(diào)增區(qū)間;
(Ⅱ) 求函數(shù)g(x)在區(qū)間[1,e]上的最小值;
(Ⅲ) 在(Ⅰ)的條件下,設(shè)f(x)=g(x)+4x﹣x2﹣2lnx,
證明: (n≥2).(參考數(shù)據(jù):ln2≈0.6931)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)2xg(x)x2ax(其中aR).對于不相等的實(shí)數(shù)x1,x2,設(shè)m,n.現(xiàn)有如下命題:

①對于任意不相等的實(shí)數(shù)x1,x2,都有m>0;

②對于任意的a及任意不相等的實(shí)數(shù)x1,x2,都有n>0;

③對于任意的a,存在不相等的實(shí)數(shù)x1x2,使得mn;

④對于任意的a,存在不相等的實(shí)數(shù)x1x2,使得m=-n.

其中的真命題有________(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)、f( )的值;
(2)若滿足f(x)+f(x﹣8)≤2,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案