(本小題滿分6分)

如圖,在邊長(zhǎng)為的菱形中,,,、分別是的中點(diǎn).

(1)求證: 面;

(2)求證:平面⊥平面;

(3)求與平面所成的角的正切值.

 

【答案】

,又           故 (2)   又, ,(3)

【解析】

試題分析:(1)…………1分

  ……………2分

(2) 

  又

  

  ……………4分

(3)解:。由 (2)知

又EF∥PB, 故EF與平面PAC所成的角為∠BPO………5分

因?yàn)锽C=a 則CO=,BO=。

在Rt△POC中PO=,故 ∠BPO=

所以直線EF與平面PAC所成的角的正切值為……………6分

考點(diǎn):本題考查了空間中的線面關(guān)系

點(diǎn)評(píng):立體幾何是高考的高頻考點(diǎn)之一,一般前一兩問(wèn)多以考查線線,線面,面面的平行與垂直關(guān)系為主,最后一問(wèn)主要考查求體積問(wèn)題或者夾角問(wèn)題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011年浙東北三校高二上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

.(本小題滿分6分)
設(shè)圓心在直線上,并且與直線相切于點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆湖南省懷化市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分6分)

已知直線截圓心在點(diǎn)的圓所得弦長(zhǎng)為.

(1)求圓的方程;

(2)求過(guò)點(diǎn)的圓的切線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省華容縣高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分6分)對(duì)于函數(shù)f(x),若存在x0ÎR,使f(x0)=x0成立,則稱點(diǎn)(x0,x0)為函數(shù)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+bx-b有不動(dòng)點(diǎn)(1,1)和(-3,-3),求a、b的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分12分) 選修4-5:不等式選講

1、(本小題滿分6分)解不等式

2、(本小題滿分6分)設(shè) ,試求的最小值及相應(yīng)的值 。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案