15.在一次某地區(qū)中學(xué)聯(lián)合考試后,匯總了3217名文科考生的數(shù)學(xué)成績,用a1,a2,…,a3217表示,我們將不低于120的考分叫“優(yōu)分”,將這些數(shù)據(jù)按圖的程序框圖進行信息處理,則輸出的數(shù)據(jù)為這3217名考生的( 。
A.平均分B.“優(yōu)分”人數(shù)
C.“優(yōu)分”率D.“優(yōu)分”人數(shù)與非“優(yōu)分”人數(shù)的比值

分析 由程序框圖知,最后輸出的m 值是大于等于120分的人數(shù),再根據(jù)$\frac{m}{3217}$表示的意義即可得出結(jié)論.

解答 解:由程序框圖可知,最后輸出的m 值是大于等于120分的人數(shù),
即次考試數(shù)學(xué)分數(shù)不低于120分的同學(xué)的人數(shù)是m,
因為$\frac{m}{3217}$表示這次考試數(shù)學(xué)分數(shù)不低于120分的“優(yōu)分”率.
故選:C.

點評 本題考查了通過設(shè)計程序框圖解決實際應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合A={x|1<log2x<3,x∈Z},B={x|5≤x<9},則A∩B=( 。
A.[5,e2B.[5,7]C.{5,6,7}D.{5,6,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.集合A={x|$\frac{x+2}{x-2}$≤0,x∈R},B={x||x-1|<2,x∈R}.
(1)求A、B;
(2)求B∩(∁UA).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,其中俯視圖是個半圓,則該幾何體的側(cè)面積為( 。
A.$\frac{3}{2}π$B.$\frac{3}{2}π+\sqrt{3}$C.$π+\sqrt{3}$D.$\frac{5}{2}π+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x∈R|ax2-3x+1=0,a∈R}.
(1)若{1}⊆A,求a的值;
(2)若集合A恰有兩個子集,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若動點P到點$F({0,-\frac{1}{4}})$的距離比它到直線$y=\frac{5}{4}$的距離小1.
(1)求點P的軌跡E的方程;
(2)若直線y=mx-4與軌跡E交于A、B兩點,且$|AB|=3\sqrt{6}$.求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.關(guān)于下列幾何體,說法正確的是( 。
A.圖①是圓柱B.圖②和圖③是圓錐C.圖④和圖⑤是圓臺D.圖⑤是圓臺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$f(x)=-\sqrt{4+\frac{1}{x^2}}$,數(shù)列{an}的前n項和為Sn,點${P_n}({a_n},-\frac{1}{{{a_{n+1}}}})$,在曲線y=f(x)上(n∈N*),且a1=1,an>0.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的前n項和為Tn,且滿足$\frac{{{T_{n+1}}}}{a_n^2}=\frac{T_n}{{a_{n+1}^2}}+16{n^2}-8n-3$,求出b1的值,使得數(shù)列{bn}是等差數(shù)列;(3)求證:${S_n}>\frac{1}{2}(\sqrt{4n+1}-1),n∈{N^*}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}的前n和為Sn,若$\frac{S_6}{S_3}=4$,則$\frac{S_9}{S_3}$=( 。
A.5B.9C.13D.16

查看答案和解析>>

同步練習(xí)冊答案