9.${∫}_{0}^{\frac{π}{6}}$cosxdx=${∫}_{1}^{a}$$\frac{1}{x}$dx(a>1),則a的值為(  )
A.$\sqrt{e}$B.2C.eD.3

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可.

解答 解:${∫}_{0}^{\frac{π}{6}}$cosxdx=sinx|${\;}_{0}^{\frac{π}{6}}$=$\frac{1}{2}$,
${∫}_{1}^{a}$$\frac{1}{x}$dx=lnx|${\;}_{1}^{a}$=lna,
∴l(xiāng)na=$\frac{1}{2}$,
∴a=$\sqrt{e}$
故選:A

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)集合A={x|-1≤x<1},B={x|0<x≤2}則集合A∪B=( 。
A.{x|0<x<1}B.{x|-1≤x≤2}C.{x|-1<x<2}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若定義在R上的函數(shù)f(x)滿足:(Ⅰ)f(x1+x2)=f(x1)•f(x2),(Ⅱ)?x1<x2,f(x1)>f(x2),則滿足以上條件的一個(gè)函數(shù)解析式為y=($\frac{1}{3}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)φ(x)=lnx-ax(a∈R).
(1)討論φ(x)的單調(diào)性;
(2)設(shè)f(x)=φ(x)-$\frac{1}{2}$x3,當(dāng)x>0時(shí),f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,四棱錐S-ABCD中,M是SB的中點(diǎn),AB∥CD,BC⊥CD,SD⊥面SAB,且AB=BC=2CD=2SD.
(Ⅰ)證明:CD⊥SD;
(Ⅱ)證明:CM∥面SAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.用數(shù)學(xué)歸納方法證明:22+42+62+…+(2n)2=$\frac{2}{3}$n(n+1)(2n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.$\frac{3-2i}{1+3i}$=(  )
A.-$\frac{3}{10}$-$\frac{11}{10}$iB.-$\frac{3}{10}$+$\frac{11}{10}$iC.$\frac{3}{10}$+$\frac{11}{10}$iD.$\frac{3}{10}$-$\frac{11}{10}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx+x+$\frac{a}{x}$.
(Ⅰ)若a=-2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若關(guān)于x的不等式f(x)≥a+1在(0,+∞)上恒成立,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的一點(diǎn),PA=PD=4=AD=2BC,CD=2.
(Ⅰ)求證:平面PQB⊥平面PAD;
(Ⅱ)若二面角M-BQ-C為30°,設(shè)|PM|=t|MC|,試確定t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案