【題目】已知定義在上的奇函數(shù)滿足, 為數(shù)列的前項和,且,則__________

【答案】3

【解析】,又∵,∴.

.

是以3為周期的周期函數(shù).

∵數(shù)列滿足,且,兩式相減整理得 是以 為公比的等比數(shù)列, ,∴.

,故答案為.

【易錯點晴】本題主要考查函數(shù)與數(shù)列的綜合問題,屬于難題.解決該問題應該注意的事項:(1)數(shù)列是一類特殊的函數(shù),它的圖象是一群孤立的點;(2)轉(zhuǎn)化以函數(shù)為背景的條件時,應該注意題中的限制條件,如函數(shù)的定義域,這往往是很容易被忽視的問題;(3)利用函數(shù)的方法研究數(shù)列中的相關問題時,應準確構(gòu)造相應的函數(shù),注意數(shù)列中相關限制條件的轉(zhuǎn)化.本題將函數(shù)的解析式、奇偶性、周期性與數(shù)列的通項公式綜合在一起出題體加大了難度,提高了綜合性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某市為了了解今年高中畢業(yè)生的體能狀況,從某校高中畢業(yè)班中抽取一個班進行鉛球測試,成績在8.0(精確到0.1)以上的為合格.數(shù)據(jù)分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30 .6小組的頻數(shù)是7.

I)求這次鉛球測試成績合格的人數(shù);

II)若參加測試的學生中9人成績優(yōu)秀,現(xiàn)要從成績優(yōu)秀的學生中,隨機選出2人參加畢業(yè)運動會,已知學生、的成績均為優(yōu)秀,求兩人、至少有1人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面內(nèi)有n(n∈N*)條直線,其中任何兩條不平行,任何三條不過同一點,若這n條直線把平面分成f(n)個平面區(qū)域,則f(3)=;f(n)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, 的中點, , .

(1)求證: 平面;

(2)當時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:已知四棱錐P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,求證:

(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“累積凈化量”是空氣凈化器質(zhì)量的一個重要衡量指標,它是指空氣凈化從開始使用到凈化效率為50%時對顆粒物的累積凈化量,以克表示,根據(jù)《空氣凈化器》國家標準,對空氣凈化器的累計凈化量有如下等級劃分:

累積凈化量(克)

12以上

等級

為了了解一批空氣凈化器(共5000臺)的質(zhì)量,隨機抽取臺機器作為樣本進行估計,已知這臺機器的累積凈化量都分布在區(qū)間中,按照、、、均勻分組,其中累積凈化量在的所有數(shù)據(jù)有:4.5,4.6,5.2,5.3,5.7和5.9,并繪制了頻率分布直方圖,如圖所示:

(1)求的值及頻率分布直方圖中的值;

(2)以樣本估計總體,試估計這批空氣凈化器(共5000臺)中等級為的空氣凈化器有多少臺?

(3)從累積凈化量在的樣本中隨機抽取2臺,求恰好有1臺等級為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分別是(
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某海濱城市附近海面有一臺風,據(jù)監(jiān)測,當前臺風中心位于城市O(如圖)的東偏南方向的海面P處,且,并以的速度向西偏北方向移動,臺風侵襲的范圍為圓形區(qū)域,當前半徑為,并以的速度不斷增大,問幾小時后該城市開始受到臺風的侵襲?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當>0時,求函數(shù)的極值點;

(2)證明:當時, 恒成立.

查看答案和解析>>

同步練習冊答案