對于雙曲線=1與=a(a>0,且a≠1)有以下結(jié)論:①有相同的頂點;②有相同的焦點;③有相同的離心率;④有相同的漸近線;⑤有相同的準(zhǔn)線.其中正確的是
[ ]
A.①,② B.②,③
C.③,④ D.④,⑤
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大課標(biāo)高二版(選修1-2) 2009-2010學(xué)年 第37期 總第193期 北師大課標(biāo) 題型:013
橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),對于橢圓有如下命題:已知A,F(xiàn),B分別是優(yōu)美橢圓+=1(a>b>0)(離心率為黃金分割比的橢圓)的左頂點、右焦點和上頂點,則AB⊥BF,那么對于雙曲線則有如下命題:已知A,F(xiàn),B分別是優(yōu)美雙曲線-=1(a>0,b>0)(離心率為黃金分割比的倒數(shù)的雙曲線)的左頂點、右焦點和其虛軸的上端點,則有
AB⊥BF
AF⊥BF
AB⊥AF
AB∥BF
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:學(xué)習(xí)周報 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-2) 2009-2010學(xué)年 第39期 總第195期 北師大課標(biāo) 題型:013
橢圓與雙曲線有許多優(yōu)美的對偶性質(zhì),對于橢圓有如下命題:已知A,F(xiàn),B分別是優(yōu)美橢圓+=1(a>b>0)(離心率為黃金分割比的橢圓)的左頂點、右焦點和上頂點,則AB⊥BF,那么對于雙曲線則有如下命題:已知A,F(xiàn),B分別是優(yōu)美雙曲線-=1(a>b>0)(離心率為黃金分割比的倒數(shù)的雙曲線)的左頂點、右焦點和其虛軸的上端點,則有
AB⊥BF
AF⊥BF
AB⊥AF
AB∥BF
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求點B的坐標(biāo);
(2)若直線l與雙曲線C:-y2=1(a>0)相交于E、F兩點,且線段EF的 中點坐標(biāo)為(4,1),求a的值;
(3)對于平面上任一點P,當(dāng)點Q在線段AB上運動時,稱|PQ|的最小值為P 與線段AB的距離.已知點P在x軸上運動,寫出點P(t,0)到線段AB的 距離h關(guān)于t的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com