【題目】設直線x=t與函數(shù)f(x)=x2 , g(x)=lnx的圖象分別交于點M,N,則當|MN|達到最小時t的值為 .
【答案】
【解析】解:設函數(shù)y=f(x)﹣g(x)=x2﹣lnx(x>0),
則y′=2x﹣ = ,
令y′=0得,x= 或x= 舍去,
所以當 時,y′<0,函數(shù)在(0, )上為單調減函數(shù),
當 時,y′>0,函數(shù)在( ,+∞)上為單調增函數(shù),
所以當x= 時,函數(shù)取得唯一的極小值,即最小值為: = ,
則所求t的值為 ,
所以答案是: .
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義的相關知識點,需要掌握利用二次函數(shù)的性質(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調性的判斷函數(shù)的最大(小)值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程.
在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)已知點.若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,設線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,已知F1 , F2分別是橢圓E: 的左、右焦點,A,B分別是橢圓E的左、右頂點,且 .
(1)求橢圓E的離心率;
(2)已知點D(1,0)為線段OF2的中點,M 為橢圓E上的動點(異于點A、B),連接MF1并延長交橢圓E于點N,連接MD、ND并分別延長交橢圓E于點P、Q,連接PQ,設直線MN、PQ的斜率存在且分別為k1、k2 , 試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)求證f(x)在(0,+∞)上遞增
(2)若f(x)在[m,n]上的值域是[m,n],求實數(shù)a的取值范圍
(3)當f(x)≤2x在(0,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x2﹣2|x|﹣1(﹣3≤x≤3),
(1)畫出這個函數(shù)的圖象;
(2)指出函數(shù)f(x)的單調區(qū)間,并說明在各個單調區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓C: 的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設線段FM交橢圓C于點P,已知橢圓C的離心率為 ,點M的橫坐標為 .
(1)求橢圓C的標準方程;
(2)若∠FPA為直角,求P點坐標;
(3)設直線PA的斜率為k1 , 直線MA的斜率為k2 , 求k1k2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017湖南長沙二模】已知橢圓()的離心率為,分別是它的左、右焦點,且存在直線,使關于的對稱點恰好是圓()的一條直線的兩個端點.
(1)求橢圓的方程;
(2)設直線與拋物線()相交于兩點,射線,與橢圓分別相交于點,試探究:是否存在數(shù)集,當且僅當時,總存在,使點在以線段為直徑的圓內?若存在,求出數(shù)集;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】荊州市某重點學校為了了解高一年級學生周末雙休日在家活動情況,打算從高一年級1256名學生中抽取50名進行抽查,若采用下面的方法選。合扔煤唵坞S機抽樣從1256人中剔除6人,剩下1250人再按系統(tǒng)抽樣的方法進行,則每人入選的機會( )
A.不全相等
B.均不相等
C.都相等
D.無法確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com