設(shè)命題p:f(x)=
2
x-m
在區(qū)間(1,+∞)上是減函數(shù);命題q:不等式m2+5m-3≥
a2+8
對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若?p且q為真.試求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專(zhuān)題:簡(jiǎn)易邏輯
分析:先求出命題p,q下的m的取值范圍,根據(jù)¬p且q為真知:p假q真,這樣即可求得m的取值范圍.
解答: 解:命題p:f′(x)=-
2
(x-m)2
<0
,∴函數(shù)f(x)在(m,+∞)上是減函數(shù),又f(x)在(1,+∞)上是減函數(shù),∴m≤1;
命題q:對(duì)任意的實(shí)數(shù)a∈[-1,1]有
a2+8
≤3
;
∴m2+5m-3≥3,解得m≥1或m≤-6
若¬p且q為真,則p假q真;
m>1
m≤-6,或m≥1
,∴m>1;
∴實(shí)數(shù)m的取值范圍是(1,+∞).
點(diǎn)評(píng):考查函數(shù)導(dǎo)數(shù)符號(hào)和函數(shù)單調(diào)性的關(guān)系,二次函數(shù)的最值,¬p且q的真假和p,q真假的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=
7
3
,an+1=3an-4n+2(n∈N*
(1)求a2,a3的值;
(2)證明數(shù)列{an-2n}是等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿(mǎn)足
1+2bn
bn
=
an
n
(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-
1
4
x+
3a2
4x
-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若a=1,設(shè)g(x)=-x2+2bx-4,且滿(mǎn)足對(duì)任意x1∈(0,2),x2∈[1,2],不等式f(x1)≥f(x2) 恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;   
(Ⅱ)令bn=an+2n,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x-x2
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[a,a+1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:三條拋物線(xiàn)y=ax2+2bx+c,y=bx2+2cx+a,y=cx2+2ax+b(a,b,c是不為0,且互不相等的不實(shí)數(shù)),證明此三條拋物線(xiàn)至少有一條與x軸有兩個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+x+1(x∈R),探究f(x)在(-∞,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα-cosβ=-
2
3
,cosα+sinβ=
1
3
,則sin(α-β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一條直線(xiàn)不在平面內(nèi),那么這條直線(xiàn)與這個(gè)平面的位置關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案