如圖所示,是一個(gè)由三根細(xì)鐵桿PA,PB,PC組成的支架,三根鐵桿的兩兩夾角都是60°,一個(gè)半徑為1的球放在支架上,則球心到P的距離為______.
連接OP交平面ABC于O',
∵三根鐵桿的兩兩夾角都是60°,
∴△ABC和△PAB為正三角形,
∴O′A=
3
3
AB=
3
3
PA
∵AO′⊥PO,OA⊥PA,
∴△AO′P△OAP
AO′
AP
=
OA
OP

∴OP=
3
OA
∵半徑OA=1
∴OP=
3

故答案為:
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正四面體ABCD的棱長為a.
(1)求證:AC⊥BD
(2)求AC與BD的距離.
(3)求它的內(nèi)切球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面α的一個(gè)法向量
n
=(-2,-2,1),點(diǎn)A(-1,3,0)在α內(nèi),則P(-2,1,4)到α的距離為(  )
A.10B.3C.
8
3
D.
10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2.
(1)求證:A1C1⊥AB;
(2)求點(diǎn)B1到平面ABC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB=4,E、F、G分別是PC、PD、BC的中點(diǎn).
(1)求證:PA平面EFG
(2)求三棱錐P-EFG的體積
(3)求點(diǎn)P到平面EFG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中,與對角線AC1異面的棱有( 。l
A.8B.6C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正三棱柱ABC-A1B1C1中,E是BC的中點(diǎn),D是AA1上的一個(gè)動點(diǎn),且
AD
DA1
=m
,若AE平面DB1C,則m的值等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1)所示,在直角梯形ABCP中,BCAP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:AP平面EFG;
(2)若點(diǎn)Q是線段PB的中點(diǎn),求證:PC⊥平面ADQ;
(3)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法正確的是( 。
A.垂直于同一平面的兩平面也平行
B.與兩條異面直線都相交的兩條直線一定是異面直線
C.過一點(diǎn)有且只有一條直線與已知直線垂直
D.垂直于同一直線的兩平面平行

查看答案和解析>>

同步練習(xí)冊答案