一個袋子里裝有7個球, 其中有紅球4個, 編號分別為1,2,3,4; 白球3個, 編號分別為2,3,4. 從袋子中任取4個球 (假設(shè)取到任何一個球的可能性相同).

(Ⅰ) 求取出的4個球中, 含有編號為3的球的概率;

(Ⅱ) 在取出的4個球中, 紅球編號的最大值設(shè)為X ,求隨機變量X的分布列和數(shù)學(xué)期望.

 

【答案】

(Ⅰ);(Ⅱ)

 

X

1

2

3

4

P

 

【解析】

試題分析:(Ⅰ)利用排列組合、古典概率公式可求;(Ⅱ)按照分布列的取值情況求對應(yīng)的概率即可.

試題解析:(Ⅰ) 設(shè)“取出的4個球中,含有編號為3的球”為事件A,則

所以,取出的4個球中,含有編號為3的球的概率為.             5分

(Ⅱ)隨機變量X的所有可能取值為1,2,3,4.                      6分

,    ,

,    ,                 10分

所以隨機變量X的分布列是

X

1

2

3

4

P

隨機變量X的數(shù)學(xué)期望.      14分

考點:概率,分布列,期望.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設(shè)取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設(shè)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南師大附中高三第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

一個袋子里裝有7個球,其中有紅球4個, 編號分別為1,2,3,4;白球3個,編號分別為1,2,3.從袋子中任取4個球(假設(shè)取到任何一個球的可能性相同).

(Ⅰ)求取出的4個球中, 含有編號為3的球的概率;

(Ⅱ)在取出的4個球中, 紅球編號的最大值設(shè)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設(shè)取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設(shè)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省溫州市八校聯(lián)考高三(上)9月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

一個袋子里裝有7個球,其中有紅球4個,編號分別為1,2,3,4;白球3個,編號分別為2,3,4.從袋子中任取4個球(假設(shè)取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中,含有編號為3的球的概率;
(Ⅱ)在取出的4個球中,紅球編號的最大值設(shè)為X,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案