若正實(shí)數(shù)x,y滿足x+y=2,且
1
xy
≥M恒成立,則M的最大值為( 。
A、1B、2C、3D、4
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)即可得出.
解答: 解:∵正實(shí)數(shù)x,y滿足x+y=2,且
1
xy
≥M恒成立,
1
xy
1
(
x+y
2
)2
=1,
因此M的最大值為1.
故選:A.
點(diǎn)評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則y=f(x)的圖象可由函數(shù)g(x)=sinx的圖象(縱坐標(biāo)不變)( 。
A、先把各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍,再向右平移
π
6
個(gè)單位
B、先把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移
π
12
個(gè)單位
C、先向右平移
π
12
個(gè)單位,再把各點(diǎn)的橫坐標(biāo)伸長到原來的2倍
D、先向右平移
π
6
個(gè)單位,再把各點(diǎn)的橫坐標(biāo)縮短到原來的
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)函數(shù)中,既是(0,
π
2
)上的增函數(shù),又是以π為周期的偶函數(shù)的是( 。
A、y=tanx
B、y=|sinx|
C、y=cosx
D、y=|cosx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,有a2+b2-c2=ab,則角C為( 。
A、60°B、120°
C、30°D、45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確命題的個(gè)數(shù)是( 。
(1)若x,y∈C,則x+yi=1+i的充要條件是x=y=1
(2)若a,b∈R且a>b,則a+i>b+i
(3)若x2+y2=0,x,y∈C,則x=y=0.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在數(shù)列{an}中,a1=1,an+1-an=2(n∈N*),則an為( 。
A、n2-1
B、n2
C、2n
D、2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-log
1
2
x實(shí)數(shù)a,b,c滿足a<b<c,且滿足f(a)•f(b)•f(c)<0,若實(shí)數(shù)x0是函數(shù)y=f(x)的一個(gè)零點(diǎn),則下列結(jié)論一定成立的是(  )
A、x0>c
B、x0<c
C、x0>a
D、x0<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C所對的邊分別是a,b,c,若
a-c
b-c
=
sinB
sinA+sinC

(1)求角A;
(2)若f(x)=sin2(x+A)-cos2(x+A),求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d.已知S2,S3+1,S4成等差數(shù)列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比數(shù)列,求
an-2
Sn
(n∈N*)的最大值.

查看答案和解析>>

同步練習(xí)冊答案