分析 ①畫可行域②明確目標(biāo)函數(shù)幾何意義,目標(biāo)函數(shù)表示動點(diǎn)P(x,y)與定點(diǎn)O(0,0)連線斜率k再加1,③過O做直線與可行域相交可計(jì)算出直線PO斜率,從而得出所求目標(biāo)函數(shù)范圍.
解答 解:先畫出可行域如圖:
因?yàn)槟繕?biāo)函數(shù)表示動點(diǎn)P(x,y)與定點(diǎn)O(0,0)連線斜率k再加1;
由圖可知;
KOB最小,KOA最大;
聯(lián)立$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$可得A(1,3)
聯(lián)立$\left\{\begin{array}{l}{y=1}\\{x+y=4}\end{array}\right.$可得B(3,1).
故:KOB=$\frac{1-0}{3-0}$=$\frac{1}{3}$,KOA=$\frac{3-0}{1-0}$=3,
∴$\frac{1}{3}$≤KOP≤3,
所以:$\frac{x+y}{x}$=1+k∈[$\frac{4}{3}$,4].
故答案為:[$\frac{4}{3}$,4].
點(diǎn)評 本題考查線性規(guī)劃問題,難點(diǎn)在于目標(biāo)函數(shù)幾何意義,近年來高考線性規(guī)劃問題高考數(shù)學(xué)考試的熱點(diǎn),數(shù)形結(jié)合是數(shù)學(xué)思想的重要手段之一,是連接代數(shù)和幾何的重要方法.隨著要求數(shù)學(xué)知識從書本到實(shí)際生活的呼聲不斷升高,線性規(guī)劃這一類新型數(shù)學(xué)應(yīng)用問題要引起重視.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25π | B. | 50π | C. | 100π | D. | 200π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,2) | B. | ($\frac{1}{2}$,+∞) | C. | (0,+∞) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}+1$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com