【題目】已知兩條直線 ,兩個平面 ,給出下面四個命題:
① , ;② , , ;
③ , ;④ , ,
其中正確命題的序號是( )
A.①④
B.②④
C.①③
D.②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M(﹣2,0),N(2,0),動點(diǎn)P滿足條件 .記動點(diǎn)P的軌跡為W.
(1)求W的方程;
(2)若A,B是W上的不同兩點(diǎn),O是坐標(biāo)原點(diǎn),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,且nan+1=(n+2)Sn , n∈N* .
(1)求證:數(shù)列 為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明準(zhǔn)備利用暑假時間去旅游,媽媽為小明提供四個景點(diǎn),九寨溝、泰山、長白山、武夷山.小明決定用所學(xué)的數(shù)學(xué)知識制定一個方案來決定去哪個景點(diǎn):(如圖)曲線 和直線 交于點(diǎn) .以 為起點(diǎn),再從曲線 上任取兩個點(diǎn)分別為終點(diǎn)得到兩個向量,記這兩個向量的數(shù)量積為 .若 去九寨溝;若 去泰山;若 去長白山; 去武夷山.
(1)若從 這六個點(diǎn)中任取兩個點(diǎn)分別為終點(diǎn)得到兩個向量,分別求小明去九寨溝的概率和不去泰山的概率;
(2)按上述方案,小明在曲線 上取點(diǎn) 作為向量的終點(diǎn),則小明決定去武夷山.點(diǎn) 在曲線 上運(yùn)動,若點(diǎn) 的坐標(biāo)為 ,求 的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn), ,則實(shí)數(shù)m的取值范圍是( )
A.[﹣2,2]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD-A1B1C1D1 , O是底面ABCD對角線的交點(diǎn).
求證:(I) C1O∥面AB1D1;
(II)面A1C⊥面AB1D1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ), 的最小正周期為π,且圖象關(guān)于x= 對稱.
(1)求ω和φ的值;
(2)將函數(shù)f(x)的圖象上所有橫坐標(biāo)伸長到原來的4倍,再向右平移 個單位得到函數(shù)g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間以及g(x)≥1的x取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2﹣2x+3 (Ⅰ)若函數(shù) 的最小值為3,求實(shí)數(shù)m的值;
(Ⅱ)若對任意互不相同的x1 , x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com