【題目】函數(shù)f(x)=﹣x2+2x﹣3,x∈[0,2]的值域是
【答案】[﹣3,﹣2]
【解析】解:函數(shù)f(x)=﹣x2+2x﹣3,的開口向下,對稱軸為:x=1∈[0,2].
函數(shù)f(x)=﹣x2+2x﹣3,x∈[0,2]的最大值為:f(1)=﹣2;最小值為:f(0)=﹣3.
函數(shù)的值域為:[﹣3,﹣2].
所以答案是:[﹣3,﹣2].
【考點精析】本題主要考查了函數(shù)的值域和二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的;當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 通項公式為 . (Ⅰ)計算f(1),f(2),f(3)的值;
(Ⅱ)比較f(n)與1的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍
(2)令g(x)=f(x)﹣x2 , 是否存在實數(shù)a,當(dāng)x∈(0,e]時,函數(shù)g(x)的最小值是3?若存在,求出a的值,若不存在,說明理由
(3)當(dāng)x∈(0,e]時,求證:e2x2﹣ x>(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有 ,則 的值是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點F到雙曲線 =1的漸近線的距離為1,過焦點F且斜率為k的直線與拋物線C交于A,B兩點,若 ,則k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某石化集團獲得了某地深海油田區(qū)塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計算結(jié)果:
, , , )
(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計的預(yù)報值.
(2)現(xiàn)準備勘探新井,若通過1,3,5,7號并計算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(3)設(shè)出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,
.
(1)證明: ;
(2)若直線與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點。
(1)求橢圓C的標準方程。
(2)已知點在橢圓C上,點A、B是橢圓C上不同于P、Q的兩個動點,且滿足: 。試問:直線AB的斜率是否為定值?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣ x3+bx2+cx+bc.
(1)若函數(shù)f(x)在x=1處有極值﹣ ,試確定b、c的值;
(2)若b=1,f(x)存在單調(diào)遞增區(qū)間,求c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com