下面給出的正多邊形的邊長都是20cm,請分別按下列要求設(shè)計(jì)一種剪拼方法(用虛線表示你的設(shè)計(jì)方案,把剪拼線段用粗黑實(shí)線,在圖中標(biāo)注出必要的符號和數(shù)據(jù),并作簡要說明.
(1)將圖1中的正方形紙片剪拼成一個(gè)底面是正方形的直四棱柱模型,使它的表面積與原正方形面積相等;
(2)將圖2中的正三角形紙片剪拼成一個(gè)底面是正三角形的直三棱柱模型,使它的表面積與原正三角形的面積相等;
(3)將圖3中的正五邊形紙片剪拼成一個(gè)底面是正五邊形的直五棱柱模型,使它的表面積與原正五邊形的面積相等.
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:操作型,空間位置關(guān)系與距離
分析:(1)在正方形四個(gè)角上分別剪下一個(gè)邊長為5的小正方形,拼成一個(gè)正方形作為直四棱柱的底面即可;
(2)在正三角形的每一角上找出到頂點(diǎn)距離是5的點(diǎn),然后作邊的垂線,剪下后拼成一個(gè)正三角形,作為直三棱柱的一個(gè)底面即可;
(3)在正五邊形的每一角上找出到頂點(diǎn)距離是5的點(diǎn),然后作邊的垂線,剪下后拼成一個(gè)正五邊形,作為直五棱柱的一個(gè)底面即可.
解答: 解:(1)如圖1,沿黑線剪開,把剪下的四個(gè)小正方形拼成一個(gè)正方形,再沿虛線折疊即可;
(2)如圖,2,沿黑線剪開,把剪下的三部分拼成一個(gè)正三角形,再沿虛線折疊即可;
(3)如圖3,沿黑線剪開,把剪下的五部分拼成一個(gè)正五邊形,再沿虛線折疊即可.
點(diǎn)評:本題考查了圖形的剪拼,解題的關(guān)鍵在于根據(jù)拼成棱柱的表面積與原圖形的面積相等,從而判斷出剪下的部分拼成的圖形應(yīng)該是棱柱的一個(gè)底面.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱柱ABC-A1B1C1中,AB1⊥BC1,求BC1與平面ABB1A1所成角的正弦值.(正三棱柱:上下底面為正三角形的直棱柱,底面邊長不一定等于側(cè)棱長)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)設(shè)函數(shù)g(x)=log2(a•2x-
4
3
a),其中a>0若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù),f(x)=|x-a|
(Ⅰ)當(dāng)a=2,解不等式,f(x)≥5-|x-1|;
(Ⅱ)若f(x)≤1的解集為[0,2],
1
m
+
1
2n
=a(m>0,n>0),求證:m+2n≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(n)=
1,n=0
n•f(n-1),n∈N*
,則f(3)的值是( 。
A、6B、24C、120D、720

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=2t
y=1+bt
(t為參數(shù)),在以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的方程為ρ=2cosθ,若直線l平分曲線C所圍成圖形的面積,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),f(x)=x2+2x,若f(2-a2)>f(a),則實(shí)數(shù)α的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+a在[1,4]上的最大值是18,則函數(shù)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sinx+
3
cosx+1.
(1)求函數(shù)f(x)在[0,
π
2
]的最大值與最小值;
(2)若實(shí)數(shù)a,b,c使得af(x)+bf(x-c)=1對任意x∈R恒成立,求
bcosc
a
的值.

查看答案和解析>>

同步練習(xí)冊答案