分析 根據(jù)分段函數(shù)f(x)的解析式,把不等式${log_2}x-({{{log}_{\frac{1}{4}}}4x-1})f({{{log}_3}x+1})≤5$化為等價的不等式組,求出解集即可.
解答 解:不等式${log_2}x-({{{log}_{\frac{1}{4}}}4x-1})f({{{log}_3}x+1})≤5$
$?\left\{\begin{array}{l}{log_3}x+1≥1\\{log_2}x-({{{log}_{\frac{1}{4}}}4x-1})≤5\end{array}\right.$或$\left\{\begin{array}{l}0<{log_3}x+1<1\\{log_2}x+2({{{log}_{\frac{1}{4}}}4x-1})≤5\end{array}\right.$,
解得1≤x≤4或$\frac{1}{3}<x<1$;
∴原不等式的解集為($\frac{1}{3}$,4].
故答案為:$(\frac{1}{3},4]$.
點評 本題考查了分段函數(shù)與對數(shù)不等式的解法與應(yīng)用問題,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,3] | B. | [2,3] | C. | (-∞,0)∪(0,2] | D. | (-∞,-1)∪(0,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,4) | B. | (4,3) | C. | (3,1) | D. | (3,8) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com