(1)判斷函數(shù)f(x)=
2x-1
x-1
在區(qū)間(1,+∞)上的單調(diào)性,并用定義法給出證明;
(2)判斷函數(shù)g(x)=x3+
1
x
的奇偶性,并用定義法給出證明.
分析:(1)利用函數(shù)的單調(diào)性的定義證明函數(shù)在區(qū)間(1,+∞)上是單調(diào)遞減函數(shù).
(2)先求函數(shù)的定義域,利用函數(shù)的奇偶性的定義進(jìn)行判斷和證明.
解答:解:(1)函數(shù)在區(qū)間(1,+∞)上是單調(diào)遞減函數(shù).
證明:對(duì)任意的1<x1<x2,則f(x1)-f(x2)=
2x1-1
x1-1
-
2x2-1
x2-1
=
x2-x1
(x1-1)(x2-1)
,
∵1<x1<x2,
∴x1-1>0,x2-1>0,x2-x1>0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2),
∴函數(shù)在區(qū)間(1,+∞)上是單調(diào)遞減函數(shù).
(2)函數(shù)g(x)=x3+
1
x
是奇函數(shù).
證明:函數(shù)g(x)=x3+
1
x
的定義域?yàn)閧x|x≠0},定義域關(guān)于原點(diǎn)對(duì)稱.
g(-x)=(-x)3+
1
-x
=-x3-
1
x
=-(x3+
1
x
)=-g(x)
,
∴函數(shù)g(x)=x3+
1
x
是奇函數(shù).
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)性和奇偶性的判斷和證明,利用單調(diào)性和奇偶性的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:對(duì)任意a,b∈R都有f(a+b)=f(a)•f(b),且f(1)=3.
(1)求f(0),f(-1)的值;
(2)若當(dāng)x>0時(shí),有f(x)>1,判斷函數(shù)f(x)的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•虹口區(qū)二模)定義域?yàn)镈的函數(shù)f(x),如果對(duì)于區(qū)間I內(nèi)(I⊆D)的任意兩個(gè)數(shù)x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,則稱此函數(shù)在區(qū)間I上是“凸函數(shù)”.
(1)判斷函數(shù)f(x)=-x2在R上是否是“凸函數(shù)”,并證明你的結(jié)論;
(2)如果函數(shù)f(x)=x2+
a
x
在區(qū)間[1,2]上是“凸函數(shù)”,求實(shí)數(shù)a的取值范圍;
(3)對(duì)于區(qū)間[c,d]上的“凸函數(shù)”f(x),在[c,d]上的任取x1,x2,x3,…,x2n,證明:f(
x1+x2+…+x2n
2n
)≥
1
2n
[f(x1)+f(x2)+…+f(x2n)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)已知函數(shù)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f'(x)滿足f'(1)=2a-6,f′(2)=-b-18,其中常數(shù)a,b∈R.
(1)判斷函數(shù)f(x)的單調(diào)性并指出相應(yīng)的單調(diào)區(qū)間;
(2)若方程f(x)=k有三個(gè)不相等的實(shí)根,且函數(shù)g(x)=x2-2kx+1在[-1,2]上的最小值為-23,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•金山區(qū)一模)設(shè)a為實(shí)數(shù),函數(shù)f(x)=x|x-a|,其中x∈R.
(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案