如圖,在梯形ABCD中,AD∥BC,∠ADC=90°,E是AB邊的中點,求證:ED=EC.

 

 

見解析

【解析】證明:如圖,過E點作EF∥BC交DC于點F.在梯形ABCD中,AD∥BC,

∴AD∥EF∥BC.

∵E是AB的中點,

∴F是DC的中點.

∵∠ADC=90°,

∴∠DFE=90°.

∴EF是DC的垂直平分線,

∴ED=EC.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-2第2課時練習(xí)卷(解析版) 題型:解答題

已知M=,N=,求二階方陣X,使MX=N.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-1第2課時練習(xí)卷(解析版) 題型:解答題

如圖,AB和BC分別與圓O相切于點D、C,AC經(jīng)過圓心O,且BC=2OC.求證:AC=2AD.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-1第1課時練習(xí)卷(解析版) 題型:解答題

如圖,四邊形ABCD是正方形,E是AD上一點,且AE=AD,N是AB的中點,NF⊥CE于F,求證:FN2=EF·FC.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-1第1課時練習(xí)卷(解析版) 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為E,∠ABC=45°,過E作AD的垂線交AD于F,交BC于G,過E作AD的平行線交AB于H.求證:FG2=AF·DF+BG·CG+AH·BH.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥選修4-1第1課時練習(xí)卷(解析版) 題型:解答題

如圖,△ABC中,DE∥BC,DF∥AC,AE∶AC=3∶5,DE=6,求BF的長.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第十章第6課時練習(xí)卷(解析版) 題型:填空題

在一個盒子中有分別標(biāo)有數(shù)字1,2,3,4,5的5張卡片,現(xiàn)從中一次取出2張卡片,則取到的卡片上的數(shù)字之積為偶數(shù)的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第十章第5課時練習(xí)卷(解析版) 題型:解答題

設(shè)連續(xù)擲兩次骰子得到的點數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).

(1) 求使得事件“a⊥b”發(fā)生的概率;

(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第十章第3課時練習(xí)卷(解析版) 題型:填空題

在樣本的頻率分布直方圖中,共有9個小長方形, 若第一個長方形的面積為0.02,前五個與后五個長方形的面積分別成等差數(shù)列且公差是互為相反數(shù),若樣本容量為1 600,則中間一組(即第五組)的頻數(shù)為_______.

 

 

查看答案和解析>>

同步練習(xí)冊答案