設(shè)(2x+1)4=a0+a1(x+1)+a2(x+1)2+a3(x+1)3+a4(x+1)4,a3=
 
考點:二項式定理的應(yīng)用
專題:計算題
分析:將等式中左邊的二項式變形,利用二項展開式的通項公式求出展開式的通項,令x+1的指數(shù)為3,求出a3的值.
解答: 解:∵(2x+1)4=16[(x+1)-
1
2
]4
∴展開式的通項為Tr+1=16(-
1
2
)
×C4r(x+1)r(-
1
2
)4-r

令r=3得a3=16×(-
1
2
)
×C43=-32
故答案為-32
點評:解決二項展開式的系數(shù)問題常利用的工具是二項展開式的通項公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知四邊形ABCD是空間四邊形,E、H分別是AB、AD的中點,F(xiàn)、G分別是邊CB、CD上的點,且
CF
CB
=
CG
CD
=
2
3
,求證:四邊形EFGH是梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們常用定義解決與圓錐曲線有關(guān)的問題.如“設(shè)橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,過左焦點F1作傾斜角為θ的弦AB,設(shè)|F1A|=r1,|F1B|=r2,試證
1
r1
+
1
r2
為定值”.
證明如下:不妨設(shè)A在x軸的上方,在△ABC中,由橢圓的定義及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ
,
同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.請用類似的方法探索:設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點分別為F1,F(xiàn)2,過左焦點F1作傾斜角為θ的直線與雙曲線右支交于點A,左支交于點B,設(shè)|F1A|=r1,|F1B|=r2,是否有類似的結(jié)論成立,請寫出與定值有關(guān)的結(jié)論是
 
..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于在區(qū)間A上有意義的兩個函數(shù)f(x)和g(x),如果對任意的x∈A,恒有|f(x)-g(x)|≤1,則稱f(x)與g(x)在A上是接近的,否則稱f(x)與g(x)在A上是非接近的.
(1)證明:函數(shù)f(x)=
1
3
x2+x
g(x)=
2
3
x+
1
3
在區(qū)間[-1,1]上是接近的;
(2)若函數(shù)f(x)=loga(x-3a)與g(x)=loga
1
x-a
在區(qū)間[a+2,a+3]上是接近的,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1+3x)n的展開式中各項系數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin500(1+
3
tan100)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x,4y+4)
,向量
b
=(x,y-1)
,且
a
b
,動點M(x,y)的軌跡為E,
(1)求軌跡E的方程;
(2)證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且OA⊥OB(O為坐標原點),并求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是一個獎杯的三視圖(單位:cm),底座是正四棱臺
(V=
1
3
h(S+
SS
+S
(1)求這個獎杯的體積(保留π)
(2)求這個獎杯的全面積.(保留π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知目標函數(shù)z=2x+y+1,且變量x、y滿足下列條件:
x-4y≤-3
3x+5y<25
x≥1
,則z的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案