18.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.若a1=3,S2=9,則an=3•2n-1;Sn=3•(2n-1).

分析 由等比數(shù)列的前n項(xiàng)和公式求出公比q=2,由此能求出結(jié)果.

解答 解:∵等比數(shù)列{an}的前n項(xiàng)和為Sn.a(chǎn)1=3,S2=9,
∴S2=3+3q=9,解得q=2,
∴${a}_{n}=3•{2}^{n-1}$,
Sn=$\frac{3(1-{2}^{n})}{1-2}$=3•(2n-1).
故答案為:3•2n-1;3•(2n-1).

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)對(duì)任意x∈[0,+∞)都有f(x+1)=-$\frac{1}{f(x)}$且當(dāng)x∈[0,1)時(shí),f(x)=x+1,若函數(shù)g(x)=f(x)-loga(x+1)(0<a<1)在區(qū)間[0,4)上有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{1}{5}$,$\frac{1}{4}$]B.($\frac{1}{5}$,$\frac{1}{4}$]C.[$\frac{1}{9}$,$\frac{1}{4}$]D.($\frac{1}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知$\overrightarrow{AB}$=(1,2),$\overrightarrow{BC}$=(0,m),$\overrightarrow{a}$=(-1,-3),$\overrightarrow{AC}$∥$\overrightarrow{a}$,則實(shí)數(shù)m的值是(  )
A.-1B.$\frac{7}{3}$C.-$\frac{7}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x)-f(x)>1,f(0)=2016,則不等式f(x)>2017•ex-1(其中e為自然對(duì)數(shù)的底數(shù))的解集為(  )
A.(-∞,0)∪(0,+∞)B.(2017,+∞)C.(0,+∞)D.(0,+∞)∪(2017,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)△ABC的三邊長(zhǎng)分別為a,b,c,△ABC的面積為S,則△ABC的內(nèi)切圓半徑r=$\frac{2S}{a+b+c}$,這是平面幾何中的一個(gè)命題,其證明采用“面積法”:S△ABC=S△OAB+S△OAC=$\frac{1}{2}$ar+$\frac{1}{2}$br+$\frac{1}{2}$cr=$\frac{1}{2}$(a+b+c)r.則r=$\frac{2S}{a+b+c}$.
(1)將此結(jié)論類比到空間四面體:設(shè)四面體S-ABC的四個(gè)面的面積分別為S1,S2,S3,S4.體積為V,猜想四面體的內(nèi)切球半徑(用S1,S2,S3,S4,V,表示).
(2)用綜合法證明上述結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,若AB=$\sqrt{2}$,∠B=60°,△ABC的面積S=$\frac{\sqrt{3}+3}{4}$,則AC=( 。
A.$\sqrt{3}$B.$\sqrt{6}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,tanA是以2為第二項(xiàng),12為第七項(xiàng)的等差數(shù)列{an}的公差,tanB是以3為第三項(xiàng),81為第六項(xiàng)的等比數(shù)列{bn}的公比,則tanC=(  )
A.$\frac{5}{7}$B.1C.-$\frac{5}{7}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2,AD=$\sqrt{3}$,∠DAB=$\frac{π}{6}$,PD⊥AD,PD⊥DC.
(Ⅰ)證明:BC⊥平面PBD;
(Ⅱ)若二面角P-BC-D為$\frac{π}{3}$,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若函數(shù)f(x)=x+asinx-$\frac{1}{3}$sin2x在R上單調(diào)遞增,則a的取值范圍是( 。
A.[-1,1]B.[-1,$\frac{1}{3}$]C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案