設(shè)數(shù)列{log3an}是公差為1的等差數(shù)列,其前n項和為Sn,且S11=55,則a3=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:由已知條件得11log3a1+
11×10
2
×1
=55,從而求出log3a1=0,log3a3=2,由此能求出a3
解答: 解:∵數(shù)列{log3an}是公差為1的等差數(shù)列,其前n項和為Sn,且S11=55,
∴11log3a1+
11×10
2
×1
=55,
解得:log3a1=0,
∴l(xiāng)og3a3=2,解得a3=9.
故答案為:9.
點(diǎn)評:本題等差數(shù)列的第三項的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4名男同學(xué)和3名女同學(xué)站成一排照相,計算下列情況各有多少種不同的站法?
(1)男生甲必須站在兩端;
(2)兩名女生乙和丙不相鄰;
(3)女生乙不站在兩端,且女生丙不站在正中間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列三個命題:
①若△ABC三邊為a,b,c,面積為S,內(nèi)切圓的半徑r=
2S
a+b+c
,則由類比推理知四面體ABCD的內(nèi)切球半徑R=
3V
S1+S2+S3+S4
(其中,V為四面體的體積,為S1,S2,S3,S4四個面的面積);
②若回歸直線的斜率估計值是1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程是
y
=1.23x+0.08;
③用相關(guān)系數(shù)r來刻畫回歸效果,r2越小,說明模型的擬合效果越好.
其中,正確命題的序號是
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個數(shù)
2
,G,2
2
成等比數(shù)列.且G>0,則G=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小王在練習(xí)電腦編程.其中有一道程序題要求如下:它由A,B,C,D,E,F(xiàn)六個子程序構(gòu)成,且程序B必須在程序A之后,程序C必須在程序B之后,執(zhí)行程序C后須立即執(zhí)行程序D.按此要求,小王有不同的編程方法
 
種.(結(jié)果用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入x=2,則輸出y的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈(0,+∞),且
1
x
+
1
2y
=1,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
9
-
y2
16
=1的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(x+2)11展開式中,二項式系數(shù)最大的項是( 。
A、第5項B、第5、6項
C、第6項D、第6、7項

查看答案和解析>>

同步練習(xí)冊答案