9.定義在R上的偶函數(shù)f(x)滿足:對任意的x1,x2∈(-∞,0),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,則( 。
A.f(-4)<f(3)<f(-2)B.f(-2)<f(3)<f(-4)C.f(3)<f(-2)<f(-4)D.f(-4)<f(-2)<f(3)

分析 根據(jù)題意,分析可得函數(shù)f(x)在區(qū)間(-∞,0)上為增函數(shù),則有f(-4)<f(-3)<f(-2),結(jié)合函數(shù)的奇偶性可得f(-4)<f(3)<f(-2),即可得答案.

解答 解:根據(jù)題意,f(x)滿足:對任意的x1,x2∈(-∞,0),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>0$,
則函數(shù)f(x)在區(qū)間(-∞,0)上為增函數(shù),則有f(-4)<f(-3)<f(-2),
由于函數(shù)f(x)為偶函數(shù),則有f(3)=f(-3),
則有f(-4)<f(3)<f(-2),
故選:A.

點評 本題考查函數(shù)奇偶性與單調(diào)性的應(yīng)用,注意先分析函數(shù)f(x)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)不等式組$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤3}\end{array}\right.$表示的平面區(qū)域為P,不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{3x+2y-6≥0}\\{x≤2}\end{array}\right.$,表示的平面區(qū)域為Q
(1)在區(qū)域P中任取一點M,求M∈Q的概率;
(2)在區(qū)域Q中任取一點N(x,y),求$\frac{y}{x}$≥$\frac{3}{4}$ 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.二次不等式ax2+bx+c<0的解集是空集的條件是(  )
A.$\left\{\begin{array}{l}{a>0}\\{^{2}-4ac≤0}\end{array}\right.$B.$\left\{\begin{array}{l}{a>0}\\{^{2}-4ac<0}\end{array}\right.$C.$\left\{\begin{array}{l}{a<0}\\{^{2}-4ac≥0}\end{array}\right.$D.$\left\{\begin{array}{l}{a<0}\\{^{2}-4ac<0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知圓C:x2+y2=2,則過點(1,1)的圓的切線方程是x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=sin2x+2$\sqrt{3}sinxcosx-{cos^2}$x.
(1)求f(x)的最大值及取得最大值時,自變量x的取值集合;
(2)指出函數(shù)y=f(x)的圖象可以由y=sinx的圖象經(jīng)過哪些變換得到;
(3)當(dāng)x∈[0,t]時,函數(shù)y=f(x)的值域為[-1,2],求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C的對邊分別為a,b,c,且(a-c)(sinA+sinC)=(a-b)sinB.
(1)求角C的大;
(2)若c=$\sqrt{3}$≤a,求2a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等差數(shù)列{an}中,公差d≠0,且a1,a4,a10成等比數(shù)列,則$\frac{{a}_{1}}ixp6jnl$的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知角α的終邊在直線y=3x上,則sin2α+sin2α=$\frac{11}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.?dāng)?shù)列1,$\frac{1}{1+2}$,$\frac{1}{1+2+3}$,…,$\frac{1}{1+2+…+n}$的前n項和為(  )
A.$\frac{2n}{2n+1}$B.$\frac{2n}{n+1}$C.$\frac{n+2}{n+1}$D.$\frac{n}{2n+1}$

查看答案和解析>>

同步練習(xí)冊答案