已知函數(shù)f(x)=sinx+cosx.
(Ⅰ)求函數(shù)y=f(x)在x∈[0,2π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知
m
=(a,b),
n
=(f(C),1)且
m
n
,求B.
考點:正弦定理,平面向量數(shù)量積的運算
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)利用輔助角公式求函數(shù)y=f(x)的表達式,即可求出函數(shù)在x∈[0,2π]上的單調(diào)遞增區(qū)間;
(Ⅱ)根據(jù)向量平行的坐標(biāo)公式,以及正弦定理建立方程關(guān)系即可求B.
解答: 解:(Ⅰ)∵f(x)=sinx+cosx=
2
sin(x+
π
4
),
∴由2kπ-
π
2
≤x+
π
4
≤2kπ+
π
2
,k∈Z

2kπ-
4
≤x≤2kπ+
π
4
,
當(dāng)k=0時,-
4
≤x≤
π
4
,
k=1時,
4
≤x≤
4
,
∵x∈[0,2π],
x∈[0,
π
4
]∪[
4
,2π]

∴函數(shù)y=f(x)在x∈[0,2π]上的單調(diào)遞增區(qū)間為[0,
π
4
],[
4
,2π]
;
(Ⅱ)∵f(C)=sinC+cosC,且
m
n
,
∴a-f(C)b=0,
即a=b(sinC+cosC),
由正弦定理得sinA=sinB(sinC+cosC),
即sin(B+C)=sinBcosC+cosBsinC=sinBsinC+sinBcosC,
即cosBsinC=sinBsinC,
∵sinC≠0,
∴cosB=sinB,
即tanB=1,∴B=
π
4
點評:本題主要考查三角函數(shù)的化簡以及正弦定理的應(yīng)用,綜合考查學(xué)生的運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1的斜率為-
2
3
,直線l2經(jīng)過點M(1,1),N(0,-
1
2
)
,則兩條直線的位置關(guān)系為( 。
A、平行B、相交但不垂直
C、相交且垂直D、以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠的固定成本為3萬元,該工廠每生產(chǎn)100臺某產(chǎn)品的生產(chǎn)成本為1萬元,設(shè)生產(chǎn)該產(chǎn)品x(百臺),其總成本為g(x)萬元(總成本=固定成本+生產(chǎn)成本),并且銷售收人r(x)滿足r(x)=
-0.5x2+7x-10.5  (0≤x≤7)
13.5  (x>7)

假定該產(chǎn)品產(chǎn)銷平衡,根據(jù)上述統(tǒng)計規(guī)律求:
(Ⅰ)要使工廠有盈利,產(chǎn)品數(shù)量x應(yīng)控制在什么范圍?
(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2
+2lnx,曲線y=f(x)在x=1處的切線斜率為4.
(1)求a的值及切線方程;
(2)點P(x,y)為曲線y=f′(x)上一點,求y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x-y,x+y,xy},B={x2+y2,x2-y2,0},且A⊆B,B⊆A,求實數(shù)x,y的值和集合A、B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市共有100萬居民的月收入是通過“工資薪金所得”得到的,如圖是抽樣調(diào)查后得到的工資薪金所得X的頻率分布直方圖.工資薪金個人所得稅稅率表如表所示.表中“全月應(yīng)納稅所得額”是指“工資薪金所得”減去3500元所超出的部分(3500元為個稅起征點,不到3500元不繳稅).工資個稅的計算公式為:“應(yīng)納稅額”=“全月應(yīng)納稅所得額”乘以“適用稅率”減去“速算扣除數(shù)”.


全月應(yīng)納稅所得額 適用稅率(%) 速算扣除數(shù)
不超過1500元 3 0
超過1500元至4500元 10 105
超過4500元至9000元 20 555
例如:某人某月“工資薪金所得”為5500元,則“全月應(yīng)納稅所得額”為5500-3500=2000元,應(yīng)納稅額為2000×10%-105=95(元)
在直方圖的工資薪金所得分組中,以各組的區(qū)間中點值代表該組的各個值,工資薪金所得落入該區(qū)間的頻率作為x取該區(qū)間中點值的概率.
(Ⅰ)試估計該市居民每月在工資薪金個人所得稅上繳納的總稅款;
(Ⅱ)設(shè)該市居民每月從工資薪金所得交完稅后,剩余的為其月可支配額y(元),試求該市居民月可支配額y的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F(x)=sin(x+
4
)+cos(x-
4
),(x∈R)
(1)求F(x)的最小正周期、最小值、圖象對稱軸方程;
(2)若cos(α-β)=
4
5
,cos(α+β)=-
4
5
,0<α<β≤
π
2
,求F2(β)-2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(2,0),B(0,6),坐標(biāo)原點O關(guān)于直線AB的對稱點為D,延長BD到P,且|PD|=2|BD|.已知直線l:ax+10y+84-108
3
=0經(jīng)過P,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點A(4,0),B(0,2),C(m+4,2m+2),若△ABC為鈍角三角形,則m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案