14.若傾斜角為45°的直線m被平行線l1:x+y-1=0與l2:x+y-3=0所截得的線段為AB,則AB的長為$\sqrt{2}$.

分析 求出平行線l1:x+y-1=0與l2:x+y-3=0的距離d.傾斜角為45°的直線m與此兩條平行線垂直,可得傾斜角為45°的直線m被平行線l1:x+y-1=0與l2:x+y-3=0所截得的線段為AB=d.

解答 解:平行線l1:x+y-1=0與l2:x+y-3=0的距離d=$\frac{|-3+1|}{\sqrt{2}}$=$\sqrt{2}$.
∴傾斜角為45°的直線m與此兩條平行線垂直,因此被平行線l1:x+y-1=0與l2:x+y-3=0所截得的線段為AB=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查了點到直線的距離公式、直角三角形邊角關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)F1,F(xiàn)2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{2}=1$的兩個焦點,已知點P在此雙曲線上,且$∠{F_1}P{F_2}=\frac{π}{3}$.若此雙曲線的離心率等于$\frac{{\sqrt{6}}}{2}$,則點P到y(tǒng)軸的距離等于2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.閱讀如下程序框圖,如果輸出i=1008,那么空白的判斷框中應(yīng)填入的條件是( 。
A.S<2014B.S<2015C.S<2016D.S<2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求值:${log_2}^3•{log_3}^4+{({log_2}^{48}-{log_2}^3)^{\frac{1}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)a=log23,b=log3$\frac{1}{2}$,$c={(\frac{1}{2})^3}$,則a、b、c的大小關(guān)系是( 。
A.a<b<cB.c<b<aC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,VA=VB=4,AC=BC=2且AC⊥BC,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB;
(3)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某人開車去上班,開始勻速前行,后來為了趕時間加速前行,則下列圖象與描述的事件最吻合的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若正四棱錐的底面邊長為2(單位:cm),側(cè)面積為8(單位:cm2),則它的體積為$\frac{4\sqrt{3}}{3}$(單位:cm3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x-2y+1≥0}\\{2x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,目標(biāo)函數(shù)z=x+2y的最大值為(  )
A.10B.7C.4D.1

查看答案和解析>>

同步練習(xí)冊答案