9.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y≤0,y≤3\end{array}$則z=2x+y的最大值是9.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí)即可得到結(jié)論.

解答 解:實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y≤0,y≤3\end{array}$作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
則當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線的截距最大,此時(shí)z最大,
由$\left\{\begin{array}{l}{y=3}\\{x-y=0}\end{array}\right.$可得A(3,3).
此時(shí)z=9,
故答案為:9.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}-mx+1}$
(1)若m∈(-2,2),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若m∈(0,$\frac{1}{2}$],則當(dāng)x∈[0,m+1]時(shí),函數(shù)y=f(x)的圖象是否總在直線y=x上方,請(qǐng)寫(xiě)出判斷過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.直線 l:(2m+1)x+(m+1)y-7m-4=0(m∈R)被圓C:(x-1)2+(y-2)2=25 所截得的最短的弦長(zhǎng)為4$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知$sin(α+\frac{π}{2})=\frac{3}{5}$,$α∈(-\frac{π}{2},0)$,則tanα的值為$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若函數(shù)f(x)對(duì)于定義域內(nèi)的任意x都滿足$f(x)=f(\frac{1}{x})$,則稱f(x)具有性質(zhì)M.
(1)很明顯,函數(shù)$f(x)=x+\frac{1}{x}$(x∈(0,+∞)具有性質(zhì)M;請(qǐng)證明$f(x)=x+\frac{1}{x}$(x∈(0,+∞)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù).
(2)已知函數(shù)g(x)=|lnx|,點(diǎn)A(1,0),直線y=t(t>0)與g(x)的圖象相交于B、C兩點(diǎn)(B在左邊),驗(yàn)證函數(shù)g(x)具有性質(zhì)M并證明|AB|<|AC|.
(3)已知函數(shù)$h(x)=|x-\frac{1}{x}|$,是否存在正數(shù)m,n,k,當(dāng)h(x)的定義域?yàn)閇m,n]時(shí),其值域?yàn)閇km,kn],若存在,求k的范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.有下列命題:
①“m>0”是“方程x2+my2=1表示橢圓”的充要條件;
②“a=1”是“直線l1:ax+y-1=0與直線l2:x+ay-2=0平行”的充分不必要條件;
③“函數(shù)f (x)=x3+mx單調(diào)遞增”是“m>0”的充要條件;
④已知p,q是兩個(gè)不等價(jià)命題,則“p或q是真命題”是“p且q是真命題”的必要不充分條件.
其中所有真命題的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x-y+$\sqrt{6}$=0相切
(1)求橢圓C的方程;
(2)若Q(1,0),設(shè)A,B是橢圓C上關(guān)于x軸對(duì)稱的任意不相同的兩點(diǎn),連接AQ交橢圓C于另一點(diǎn)E,證明直線BE與x軸交于定點(diǎn)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知三點(diǎn)A(2,-3),B(4,3),C(5,m)在同一直線上,則m的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))上的點(diǎn)到其焦點(diǎn)的距離的最小值為(  )
A.$\sqrt{5}$-3B.$\sqrt{5}$-2C.3-$\sqrt{5}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案