已知函數(shù)f(x)=
2x
x+a
,滿足f(2)=1.
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(-2,+∞)上是增函數(shù).
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)根據(jù)f(2)=1即可求出a,從而求出f(x)解析式;
(2)求f′(x),容易判斷出f′(x)>0,從而得到f(x)在(-2,+∞)上是增函數(shù).
解答: (1)解:由已知f(2)=1得:
2×2
2+a
=1,解得a=2;
∴f(x)=
2x
x+2
;
(2)證:f′(x)=
4
(x+2)2
>0;
∴f(x)在(-2,+∞)上是增函數(shù).
點評:考查已知函數(shù)解析式求函數(shù)值,根據(jù)導(dǎo)數(shù)符號證明函數(shù)的單調(diào)性的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-1|,g(x)=-x2+6x-5.
(Ⅰ)用分段函數(shù)的形式表示g(x)-f(x),并求g(x)-f(x)的最大值;
(Ⅱ)若g(x)≥f(x),求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足
x+y-3≥0
x-y+1≥0
3x-y-5≤0
.求:
(1)z=2x+y的最小值;
(2)z=
y+x
x
的最大值;
(3)z=x2+y2的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
13-m
+
y2
m-2
=1的焦距為6,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知映射f:A→B,其中A=[0,1],B=R,對應(yīng)法則是f:x→log
1
2
(2-x)-(
1
3
)x
,對于實數(shù)k∈B,在集合A中不存在原象,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三角形的邊長為6,那么△ABC的直觀圖△A′B′C′的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m為任意實數(shù),則直線(m+2)x+(m-3)y+4=0必過定點
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-x-2≤0},不等式x2-ax-a-2≤0在集合A上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x+2sinx,則f′(0)=
 

查看答案和解析>>

同步練習(xí)冊答案