(2012年高考湖南卷理科5)已知雙曲線C :-=1的焦距為10 ,點(diǎn)P (2,1)在C 的漸近線上,則C的方程為
A.-=1 B.-=1 C.-=1 D.-=1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(湖南理))已知數(shù)列{an}的各項(xiàng)均為正數(shù),記A(n)=a1+a2++an,B(n)=a2+a3++an+1,C(n)=a3+a4++an+2,n=1,2。
(1) 若a1=1,a2=5,且對(duì)任意n∈N﹡,三個(gè)數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{ an }的通項(xiàng)公式.
(2) 證明:數(shù)列{ an }是公比為q的等比數(shù)列的充分必要條件是:對(duì)任意,三個(gè)數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考(湖南文))設(shè) a>b>1, ,給出下列三個(gè)結(jié)論:
① > ;② < ; ③ ,
其中所有的正確結(jié)論的序號(hào)是.( 。
A.① B.① ② C.② ③ D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2012年高考湖南卷理科21)(本小題滿分13分)
在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:(x-5)2+y2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線x=﹣2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(Ⅰ)求曲線C1的方程;
(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點(diǎn),過P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線x=﹣4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的縱坐標(biāo)之積為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com