定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)f'(x),且xf'(x)+f(x)>0,那么
12
f(1)
與f(2)的大小關(guān)系是( 。
分析:由已知條件構(gòu)造函數(shù)g(x)=xf(x),即可得出答案.
解答:解:令g(x)=xf(x),∴g(x)=xf(x)+f(x)>0,
∴g(x)在R上單調(diào)遞增,∴g(1)<g(2),即f(1)<2f(2),于是
1
2
f(1)<f(2)

故選B.
點評:本題考查構(gòu)造函數(shù)法比較函數(shù)值的大小,根據(jù)題目提供的信息恰當(dāng)?shù)臉?gòu)造出適當(dāng)?shù)暮瘮?shù)是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、若函數(shù)y=f(x)是定義在R上的可導(dǎo)函數(shù),則f′(x0)=0是x0為函數(shù)y=f(x)的極值點的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)y=f(x)在x=1處的切線方程是y=-x+2,則f(1)+f'(1)=( 。
A、-1
B、
1
2
C、2
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(-x)=f(x),f(x-2)=f(x+2),且當(dāng)x∈[2,4]時,f(x)=x2+2xf(2),則f(-
1
2
)與f(
16
3
)的大小關(guān)系是( 。
A、f(-
1
2
)=f(
16
3
B、f(-
1
2
)<f(
16
3
C、f(-
1
2
)>f(
16
3
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)、g(x)是定義在R上的可導(dǎo)函數(shù),且f(x)g(x)+f(x)g(x)<0,則當(dāng)a<x<b時有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的可導(dǎo)函數(shù)y=f(x)對任意x∈R都有f(x)=f(-x),且當(dāng)x≠0時,有x•f′(x)<0,現(xiàn)設(shè)a=f(-sin32°),b=f(cos32°),則實數(shù)a,b的大小關(guān)系是
a>b
a>b

查看答案和解析>>

同步練習(xí)冊答案