【題目】已知函數(shù)f(x)=lnx﹣sinx+ax(a>0).
(1)若a=1,求證:當(dāng)x∈(1,)時(shí),f(x)<2x﹣1;
(2)若f(x)在(0,2π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.
【答案】(1)詳見(jiàn)解析;(2)(0,1).
【解析】
(1)構(gòu)造函數(shù)g(x)=f(x)﹣(2x﹣1),對(duì)其求導(dǎo)研究其在x單調(diào)性,即可證明結(jié)論;
(2)先對(duì)f(x)求導(dǎo),然后把f(x)在(0,2π)上有且僅有1個(gè)極值點(diǎn)轉(zhuǎn)化為的零點(diǎn)問(wèn)題,利用y(a>0)與函數(shù)y=cosx,x∈(0,)的圖象只有一個(gè)交點(diǎn)求出a的取值范圍即可.
解:(1)證明:當(dāng)a=1時(shí),f(x)=lnx﹣sinx+x,令g(x)=f(x)﹣(2x﹣1)=lnx﹣sinx﹣x+1,x,
則,∴g(x)在(1,)上單調(diào)遞減,
故g(x)<g(1)=﹣sin1<0,所以f(x)<2x﹣1;
(2)解:由題知,令,所以.
∵在(0,2π)上有且僅有1個(gè)極值點(diǎn),
∴函數(shù)y(a>0)與函數(shù)y=cosx,x∈(0,)的圖象只有一個(gè)交點(diǎn),
∴,即,
所以a的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(且a為常數(shù))和(且k為常數(shù)),有以下命題:①當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);②當(dāng)時(shí),若恰有3個(gè)不同的零點(diǎn),則;③對(duì)任意的,總存在實(shí)數(shù),使得有4個(gè)不同的零點(diǎn),且成等比數(shù)列.其中的真命題是_____(寫出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.
(1)證明:平面.
(2)三棱錐的體積最大時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)函數(shù)在點(diǎn)處的切線的斜率為2,求的值;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)有兩個(gè)不同極值點(diǎn)為、,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式e2x﹣alnxa恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰梯形中,,,,E,F分別為,邊的中點(diǎn).現(xiàn)將沿著折疊到的位置,使得平面平面.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:,過(guò)右焦點(diǎn)F的直線l與橢圓E交于A,B兩點(diǎn)(A,B兩點(diǎn)不在x軸上),橢圓E在A,B兩點(diǎn)處的切線交于P,點(diǎn)P在定直線上.
(1)記點(diǎn),求過(guò)點(diǎn)與橢圓E相切的直線方程;
(2)以為直徑的圓過(guò)點(diǎn)F,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,且直線l與曲線C交于M、N兩點(diǎn).
(1)求直線l的普通方程以及曲線C的直角坐標(biāo)方程;
(2)若曲線C外一點(diǎn)恰好落在直線l上,且,求m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足奇數(shù)項(xiàng)成等差,公差為,偶數(shù)項(xiàng)成等比,公比為,且數(shù)列的前項(xiàng)和為,,.
若,.
①求數(shù)列的通項(xiàng)公式;
②若,求正整數(shù)的值;
若,,對(duì)任意給定的,是否存在實(shí)數(shù),使得對(duì)任意恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com